Planar graphs
Definition: A graph is plower if it has a drawoing (on the plane R^{2}) without any edges crossing (they are allowed to meet at a common vertex). A planar drawing ar a planar representation of a graph is such a dravoing of the graph.

Examples
1.

Clearly planar.
2.

Looks now planar. However
(This graph is usually denotes K_{4}. This means fit has 4 vertices and an edge between any two distinct edges. Another representation of the same graph. It is clear it is planar.
3. Consider the graph G, one of whore representations is:

We can bind a hamiltonian cycle in G, wamely

$$
\sigma=(a, f, c, h, d, g, b, e)
$$

Neat drone the edge $f b$ as below

(The edge $f b$ is green called a "chord" of the cycle). If you wish to drove the edges all and ed so that they don't cross any of the elges in the drawing above you have no choice but the following:

This force e us to drown cg in the following way to keep edger form crossing:
(See neat page)

Tins shows that G is planar, something not ot vious from the original drawing of G.

The above is often called the circle-chord method. We may say more later in the course.

Below is another representation of the same graph as a planal graph.

Brakes up the plane into six region.

Take away: Planar supresentations ane not unique.
The above planar drawing breaks up the plane \mathbb{R}^{2} into a number of region (six actually). Note that the region labeled (6) is not enclosed by edges. It is called the "unbounded region" or the "unbounded face" of the planar drawing.

Notations and terminology
Suppose $G=(V, E)$ is a planar graph. Represent it on the plane wittuont any edges crossing. (There may be more than one representation as we just saw.) The planar graph's edges break up the plane int disjoint regions with the edges forming the boundaries of each region. In the picture above we have six regions. The regions ane sometimes called faces of the graph. Let
$f=$ \# of trees in planar duanoing of G.
All faces, except one, are enclosed by edges. The one that is not enclosed is called the unbounded face of the planar drawing of G, and the remaining are collet the bounded faces of this planar deranoing.

Let
$b=$ \# of bounded faces.
Then, clearly

$$
f=b+1
$$

It may seem that f will depend upon the particular drawing of G as a planar graph. How aver, in the last example, note that $f=6$ in both planar representations of G. In fort, if G is convected, $f=2+|E|-|V|$, a famous result of Euler, and hance is independent of the planar representation of G.

Euler's theorem is also important in topology: It is a way saying that the "Euler characteristic" of a sphere is -2 . Read this up in a topology book if yon have time. It is not reeled in
this course.
Theoven (Euler): Let $G=(V, E)$ be a converted planar graph with m edges and n vertices. Every planar drawing of G has f faces, where f satisfies

$$
n-m+f=2
$$

Proof: We fix a planar drawing of G and let f be the number of face. We prove the result by induction on m. If $m=0$, then $n=1$, $\sin c e$ G is connected. It is clear, in this case, that $f=1$. Since $1-0+1=2$, the base care is verified.
suppose now that G has m edges where $m \geqslant l$, and that Euler's formula is tome for all graphs with $m-1$ or fewer edge.

Case 1: G has a bounded face F. In this care F has a cycle σ in its boundary. Let e be an edge in σ. Form the graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V$ and $E^{\prime}=E-\{e\}$. Then G is converted.
Let $n^{\prime}=\left|V^{\prime}\right|, m^{\prime}=\left|E^{\prime}\right|$ and f^{\prime} the mumbler of fores in G^{\prime}.
since $m^{\prime}=m^{-1}$, the induction hypothesis applies and hence

$$
n^{\prime}-m^{\prime}+f^{\prime}=2 \text {. }
$$

Note that since $V^{\prime}=V$, therefore $n^{\prime}=n$. Tho $m^{\prime}=m-1$. Also note that $f^{\prime}=f-1$. Thur $n^{\prime}-m^{\prime}+f^{\prime}=2$ translates to

$$
n-(m-1)+(f-1)=2 .
$$

Thus
as requires.

Care 2: G has no bounded face. This means $f=1$. If every venter has two (or more) edges incident on it, then G has a cycle, which means it hes a boundel face. Therefore G has a veter r, with exactly one edge incident on it. Call this edge e. Consider the graph

$$
G^{\prime}=\left(V^{\prime}, E^{\prime}\right)
$$

where $V^{\prime}=V,\left\{V^{\prime}\right\}$ and $E^{\prime}=E-\{e\}$. Then G^{\prime} is connected, and has no boundel fries. Let $n^{\prime}=\left|V^{\prime}\right|, m^{\prime}=\left|E^{\prime}\right|$, and f^{\prime} the m umber of faves of the planar droving of G^{\prime}. Since G^{\prime} has no bounded paces, $f^{\prime}=1$. Also $n^{\prime}=n-1$, and $m^{\prime}=m-1$. Snide $m^{\prime}<m$, our induction hypothesis. applies ant so $n^{\prime}-m^{\prime}+f^{\prime}=2$. Since $f=f^{\prime}=1$, this give $(n-1)-(m-1)+f=2$, lie. $n-m+f=2$, as requinal.

A graph with NO bounded faces It mut have at lear one waters of degree 1 .

Remark: If G is set. $d y(r) \geqslant 2$ per every $v \in V$, then we can form a cycle as follows. Start with a rates $x=x_{1}$. Rick x_{2} adjacent to x_{1}. Since $\operatorname{deg} x_{2} \geqslant 2$, we have $x_{3} \operatorname{adjacent}$ to x_{2}, with $x_{3} \neq x_{1}$. Nest we can find x_{4} adjacent to x_{3} with $x_{4} \neq x_{2}$. Either $x_{4}=x_{1}$, in which care we stop, or we pick a neighbour x_{5} I x_{4} different from x_{3}. The process terminates whenever we raisit a vertex abready visited. Since G is finite, the process has to terminate. Thus G must have a cyde!

In other warts, if G has no cycles, then there is a rates of dequee 1. In particular of G has a planar branding with no bounded faces, then G must have vertex which has only one edge incident on it.
The degree of a face
Let F be a face of a planar drawing of a planar graph $G=(V, E)$. Set
$\operatorname{deg}(F):=\#$ of edges on the boundary of F. The convention is that if an both sides of an edge e bound F,
then e is counsel twice. The reason for the convention is that as you go around the boundary of F you brace e twice as in the following picture.

$$
\begin{aligned}
& \operatorname{deg}(F)=5 \text { where } \\
& F=\text { unbounded face. }
\end{aligned}
$$

The number $\operatorname{deg}(F)$ is called the degree of F.
Example: Comider the graph below.

It has exactly two faces, a bounded one B, and an unbounded one U. Clearly

$$
\begin{aligned}
& \operatorname{dy} B=3 \\
& \operatorname{dy} u=9 .
\end{aligned}
$$

Note that $\operatorname{deg} B+\operatorname{deg} u=12=2(|E|)$
Tho oran: Let $G=(V, E)$ be a planar graph, R_{1}, \ldots, R_{f} the distinct faces of a planar drawing of G. Then

$$
\sum_{i=1}^{f} d y\left(R_{i}\right)=2|E| .
$$

Proof: This is clear since every edge is counted twice when addling the degrees of the force.

Remark: Note the cimilainty with the statement

$$
\sum_{v \in v} \operatorname{deg}(v)=2|E|
$$

If we wish to emphasize the role of G, we will waite $\operatorname{deg}_{G}(R)$ instead
of $\operatorname{deg} R$.
A necessary condition for a graph to be planar
suppose $G=(U, E)$ is planar. Let R_{1}, \ldots, R_{f} beiter distinct faces in a planar drawing of G, and $m_{i}=\operatorname{dy} R_{i}$. Let $m=|E|, n=|V|$. suppose $n \geq 3$. Then it is clear that each R_{i}, $\operatorname{lincluding~the~}$ unbounded face, has dequee at least 3 (for bounded faces, this is obvious. It follows that

$$
2 m=\sum_{i=1}^{f} m_{i} \geqslant \sum_{i=1}^{f} 3=3 f .
$$

Assume G is connected.
By Euler's formula we have

$$
f=m-n+2
$$

The inequality $2 m \geqslant 8 f$ we just proved gives

$$
2 m \geqslant 3(m-n+2)=3 m-3 n+6 .
$$

ie.

$$
3 n-6 \geqslant m \text {. }
$$

This gives us the following thrower.
Theoven: Let $G=(V, E)$ be a connected planar graph with $n=|v|, m=|E|$. If $n \geqslant 3$, then $3 n-6 \geqslant m$.

Definition: A graph $G=(V, E)$ is complete if any two distinct vertices are adjacent.

Note: It is obvious that if $G=(V, E)$ and $H=(W, F)$ are complete graphs with $|V|=|W|$, then G and H are isomorphic. The complete graph with vertices $1,2, \ldots, n$ is denoted $k_{n, i}$ ie. $K_{n}=[[n],\{\{i, j\} \mid i, j \in[n], i \neq j\}$. (See also problem 1 If the "Problems worth thinking about" section in the plans for week 6$)$. If $G=(V, E)$ is complete, and $n=|V|$, then G is isomorphic to K_{n}. Kn in clearly conneded $<\sigma=(1,2, \ldots, n)$ is a hamiltonian cycle in Kn. Thus ene ny complete graph is connected and hamiltonian.

Here is a drawing on the complete graph k_{5}.

Corollary: k_{5} is not planar.
Prof:
We have $n=5, m=10$ ant hance $3 n-6=9<10=m$.

Theorem: Every planar graph has a vertex of dequce 5 or less.
Proof:
Wittuont loss of generality, we may assume on graph is convected. Let $G=(V, E)$ be a connected planar graph, and set $n=|v|, m=|E|$. suppose deg $(v)>5$ for every $v \in V$. This means $\operatorname{deg}(v) \geqslant 6, \forall v \in V$. Hence

$$
2 m=\sum_{v \in V} d e g(v) \geqslant \sum_{v \in V} 6=6 \cdot|v|=6 n .
$$

Thus

$$
m \geqslant 3 n .
$$

It follows that

$$
m>m-6 \geqslant 3 n-6
$$

which, by the previous theorem, is \lim possible.
Remark: The above is a necessary condition for a graph to be planar, not a sufficient condition. Indeed, every vertex in k_{5} has degree 4, but, as we sows above, k_{5} is not planar.

Graph colowing: A colonering of a graph is the assignment of a colour to each vertex of the graph so that no two adjacent vertices have the same colones.

A graph can be coloured by assigning a different colour to each of its vertices. How ewer, for most graphs a coloring cam be found that uses fewer colowers than that. What is the leas number of colours necessary?

Defiention: The chromatic number of a graph is the least number of colours needed for a colouring of this graph.

Notation: $X(G)=$ chromatic number of graph G.
Theorem (The Four Colour Theovem): if G is planar then $X(G) \leqslant 4$.
The theorems was conjectured in the 1850 s . It was an open problem for over 120 years when it was finally proven by Appel and Haken in 1976. The proof involved examing approximately 2000 possible counterexamples, and eliminating them via an analysis carried out by a computer. It used up over 1000 hours of computer time. Needless to say, we wort be giving a proof. While there have been improvements on the original proof cir terms of the number of graphs to be checkel eve), there is none that is not computer based.

Let $n \in \mathbb{N}$. We say that graph G is n-colourable if $n \geqslant X(G)$. Thus the Four Colour Theorem says that every planar graph is 4-colowrable. Since we are not going to prove that, as a consolation we offer this:

Theorem: Every planar graph is 5-colowrable.
Proof:
Let $G=(V, E)$ be a planar graph. Let $n=|V|$. We will prove the theorem by induction on n. If $n \leq 5$, the theorem is clear.

Suppose $n>5$. Assume tho theorem is true for any planar graph with fewer than n vertices. We know from an earlier result that since G is planar, G has a vertex v of dequee less than or equal to 5 .

Let H be the graph obtained from G by removing the vertex v (as well as all edges in G incident on v). By ow r induction leypoltuesis, H is 5-colourable, and so colour it with five or fewer colours.
of $\operatorname{deg}_{G}(v) \leq 4$, then at most four colours have been wed by the reticles adjacent to v (in the colowing of H) and so we cam colour v by one of the colours not used up. suppose $\operatorname{deg}_{G}(v)=5$. Let a, b, c, d, e be the vertices adjacent to v. If only four colours have been (when colonosing H) for these fire vertices, once again we can assign a colour to v so that G is 5-coloured.

The only difficult case is when a, b, c, d, e, have been assigned fire dithenent colours, say as below, ie. a is coloured red, b purple, c gran, d blue, and e brown. Colour v black temporarily.

Let $H_{R G}$ be the subgraph of H whore
 vertices are either red or green. In other words $H_{R G}$ is obtained from H by removing all reatices coloured purple, blue, or brown, and all edges incident on such vertices.
Now consider the connected component H^{\prime} of $H_{R G}$ containing a. If H^{\prime} does not contain C, then switch the two colours in H_{3}^{\prime} so that the new colour of the red vertices in H^{\prime} is green, and the new colour of the green reties in H^{\prime} is red. Since H^{\prime} is a connected component of HRG, HRG remains 2-coloured in this new scheme, and H remains 5 -coloured in this new scheme. However, now bott a and c are green, and hence we can colour v red.

We could do this because c was not in H ! What if c is a veter in H^{\prime} ? In this case we have a path from a to C in H^{\prime} Cand hance
in H) which consists of red and green vertices alternating with each other.

\longleftarrow path from a to c in which the red and green vertices alternate.

Let σ be the cycle obtained by adding the edge va to the front of this path and $c v$ to the end.

There are two possibilities. Eilter b is inside σ and d is outside σ, or b is outside σ and d is inside. The situations are symmetric, and so we will assume b is inside σ and d is outside (as in the picture).

Consider any patty τ in G from b to d. Since σ encloses b, τ must meet σ at some vertex. Since no vertex in σ is ether purple or blue, this means τ cannot consist of only purple and blue vertices. This means that if $H_{P B}$ is the sut-graph of H consisting of the purple ant blue vertices in H, then the connected component of $H_{P B}$ containing b does not contain d. Let $H^{\prime \prime}$ be this corrected component. Switch the two colons in H" (blues ts purples and purples to blues). Then H remains 5-colowed. Now both b and d are blue. This means that if we colour v purple, then we have colowing of G with 5 colours on required.

