Notation. Let $x$ be a vertex of a graph $G$. Then $N(x)=N_{G}(x)$ will denote the set reticles in $G$ adjacent to $x$. In often wards NC is the set of neighbours of $x$ in $G . N(x)$ is called the neighbowinood of $x$ in $G$.

Theorem (Dirac's theorem): Let $G=(V, E)$ be a connected graph with $n$ vertices such that $n \geqslant 3$. If the degree of every vertex in $G$ is at least $n / 2$, then $G$ ia hamiltonian.

Prof:
Let $\sigma=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ be a path in $G$ of maxcinal length. This means if $\tau$ is another path in $G$ then

$$
\text { length }(\tau) \leqslant \text { length }(\sigma)=r-1 \text {. }
$$

Let $x$ be the set of vertices in the path $\sigma_{3}$ ie., $X=\left\{x_{1}, \ldots, x_{r}\right\}$. Since $\sigma$ is of maximal length $N\left(x_{1}\right) \subset X$ and $N\left(x_{r}\right) \subset X$, as we will see in a moment. Note that since $x \notin N(x)$, this means $N\left(x_{1}\right) \subset\left\{x_{2}, \ldots, x_{r}\right\}$ and $N\left(x_{r}\right) \subset\left\{x_{1}, \ldots, x_{r-1}\right\}$.

Let us now prove that $N\left(x_{1}\right)$ and $N\left(x_{r}\right)$ are subsets of $X$. Suppose $u \in N\left(x_{1}\right)$. If $u \notin X$, then

$$
\tau=\left(u, x_{1}, \ldots, x_{r}\right)
$$

is path in $G$ of length strictly greater than the lenfter of $\sigma$, and this is not possible. Thus $u \in X$, i.e. $N\left(x_{1}\right) \subset X$. Similarly, if $u \in N\left(x_{r}\right)$ and $u \notin X$, then $\left(x_{1}, \ldots, x_{r}, u\right)$ is a path longer tran $\sigma$, which is not possible. So $u \in X$, ie. $N\left(x_{r}\right) \subset X$.

Neat we claim that $V=X$. To see thin, suppose $\exists u \in V$ s.t. $u \notin X$.

Now $N\left(x_{1}\right) \subset\left\{x_{2}, \ldots, x_{r}\right\}$
Let $S=\left\{x_{j} \in X \mid x_{j+1} \in N\left(x_{1}\right)\right\}$.
Then $|S|=\left|N\left(x_{1}\right)\right|$, Moreover $x_{r} \notin S$, by definition of $S$. we claim $S \cap N(u) \neq \varnothing$. suppress $S \cap N(u)=\phi$. Then $S, N(u)$, and $\left\{x_{r}\right\}$ are three disjoint subsets of $V$. Hence

$$
|v| \geqslant|S|+|N(u)|+\left|f x_{r}\right| \geqslant \frac{n}{2}+\frac{n}{2}+1
$$

ie. $\quad n \geqslant n+1$.
This is not possible. Hence $S \cap N(u) \neq \phi$.
Let $x_{j} \in S \cap N(u)$. Sine $x_{j} \in S$, by definition of $S$, $x_{j+1}$ is adjacent to $x_{1}$. Sine $x_{j} \in N(u), x_{j}$ is adjacent to $u$.


Consider the patty

$$
\tau=\left(u, x_{j}, x_{j-1}, \ldots, x_{2}, x_{1}, x_{j+1}, x_{j+2}, \ldots, x_{r}\right)
$$

The palter $\tau$ starting at $u$ and ending at $x_{r}$


The path $\tau$ is clearly bough than $\sigma$, giving a contradiction. Thus

$$
V=X=\left\{x_{1}, \ldots, x_{r}\right\} .
$$

Neat we modify $\sigma$ so that so that the modified path is a hamillouian cycle.

As we olesenved, $N\left(x_{1}\right) \subset\left\{x_{2}, \ldots, x_{r}\right\}$. Similonly $N\left(x_{r}\right) \subset\left\{x_{1}, \ldots, x_{r-1}\right\}$ (we are using the font that $x_{1}$ is not adjacent $t$ itself and $x_{r}$ is not adjacent to itself).

As before, let $S=\left\{x_{j} \in X \mid x_{j+1} \in N\left(x_{1}\right)\right\}$. We daim

$$
\operatorname{s\cap N}\left(x_{r}\right) \neq \phi .
$$

The argument is a repeat of what we had. Note that $x_{r} \& S$ and $x_{r} \notin N\left(x_{r}\right)$. Suppose $s \cap N\left(x_{r}\right)=\phi$. Then

$$
\begin{aligned}
n=|V| \geqslant\left|\operatorname{SUN}\left(x_{r}\right) \cup\left\{x_{r}\right\}\right| & =|s|+\left|N\left(x_{r}\right)\right|+1 \\
& \geqslant \frac{n}{2}+\frac{n}{2}+1=n+1
\end{aligned}
$$

which is a contradiction.

Thus we have an element $x_{j} \in S \cap N\left(x_{r}\right)$. By definition A $S, x_{j+1}$ is adjacent to $x_{1}$, and since $x_{j} \in N\left(x_{r}\right)$, $x_{j}$ is adjacent to $x_{r}$.


Create a new path

$$
\tau=\left(x_{1}, x_{2}, \ldots, x_{j}, x_{r}, x_{r-1}, x_{r_{-2}}, \ldots, x_{j+2}, x_{j+1}\right)
$$



The path $\tau$, starting at $x_{1}$ and ending at $x_{j+1}$. Note $x_{j+1} x_{1}$ is an edge.
Since $x_{j+1}$ is adjacent to $x_{1}$ in $G, \tau$ is a cycle. In feet it is a hamiltonian cycle since it visits every vertex $x_{i}, i=1, \ldots, r$, ant we proved earlier that $V=X=\left\{x_{1}, \ldots, x_{,}\right\}$.

This prows Dirac's theorem.

