Reminder: All graphs (mines otherwise stated) are assumed to he finite.

Recall that a graph is called euterian if either it has only one vertex, or it has a archit which teraveces every edge exactly once. We had started the poof of Enter's theorem, namely: A graph is eulerion if and only if it is connected and the degree of every votes is even.

We had proved one direction, namely, if a graph is euleriom then it is connected and every vertex has even degree. Before we begin the proof of the converse, we need a definition.

Definition: Let $G=(V, E)$ be a graph. A trail in G is a walk $\sigma=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that the edges in the trail (lie $x_{i} x_{i+1}, i=1, \ldots, n-1$) are distinct.

Definition: Let G be a graph. A vertex v of G is said to be isolated if no edge of G is incident on it.

Note: A vertex v is isolated if and only if $\operatorname{deg}(v)=0$.
Remark: It is easy to see that if $\sigma=\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ is a trail with $x_{n+1}=x_{1}$, then $n \geqslant 3$, and σ is a circuit. Conversely, clearly a circuit $\sigma=\left(x_{1}, \ldots, x_{n+1}\right)$ is (by definition) a trail.

Building trails
Suppose v is a vertex in graph G witt $\operatorname{deg}(v)>0$.
Then one can build a maximal trail starting at v as follows.
Set $v=x_{1}$. Pick an edge $e_{1}=v x_{2}=x_{1} x_{2}$ incident on x_{1}.
There is such an edge because $\operatorname{deg}(v)>0$. If e_{1} is the only edge
incident to x_{2} slop. If not, pick $e_{2}=x_{2} x_{3}$ such that $e_{2} \neq e_{1}$. Look at the edges incident to x_{3}. If there is any which is different from e_{2}, ban $x_{3} x_{4}$, pick it and ad $e_{3}=x_{3} x_{4}$. Suppose we have picked edges

$$
e_{1}=x_{1} x_{2}, e_{2}=x_{2} x_{3}, e_{3}=x_{3} x_{4}, \ldots, e_{i}=x_{i} x_{i+1}
$$

such that no edge equals any of the other edges. Look at all the edges incident to x_{i+l}. If there are none different from $e_{1}, e_{2}, \ldots, e_{i}$, stop. If there is an edge $e=x_{i+1} y$ different from $e_{1}, e_{2}, \ldots, e_{i}$, then set $x_{i+2}=y$ and $e_{i+1}=x_{i+1} x_{i+2}$. since G is finite the process has to stop and the have a trail

$$
\sigma=\left(x_{1}^{\prime \prime}, x_{2}, \ldots, x_{n}\right)
$$

such that all the edges incident to x_{n} are one of the $e_{1}, e_{2}, \ldots, e_{n-1}$, where $e_{j}=x_{j} x_{j+1}, j=1, \ldots, n-1$. In other wards vertices neighbouring x_{n} are a subset of $\left\{x_{1}, x_{2}, \ldots, x_{n}-1\right\}$. One cannot expand the trail, since edges in trail are distinct.

Note: In the above trail if $x_{n} \neq x_{1}$, then the dequce
of x_{n} is odd, for the "incoming" edge $e_{n-1}=x_{n-1} x_{n}$ has no matching "outgoing" edge. The trail σ may visit x_{n} on earlier occasions, but when that happens, say $x_{i}=x_{n}$ for some $2 \leq i \leq n-2$, then the $e_{i-1}=x_{i-1} x_{i}=x_{i-1} x_{n}$ can be pained with $e_{i}=x_{i} x_{i+1}=x_{l} x_{i+1}$.
we have thanepre proven the following lemma
Lemma: Let $G=(V, E)$ be a graph such that every vertex of G has even degree. If $v \in V$ has positive degree, then there is a circint in G which begins and ends at v.
Proof:
Let $\sigma=\left(x_{1}, \ldots, x_{m}\right)$ be a maximal trail (as constructed above) with $x_{1}=v$. Since $\operatorname{deg}\left(x_{m}\right)$ is even, by the Note above, x_{m} must equal x_{1}. From the Remark above, σ is a circuit (set $C n=m-1$ if you wish, so that $m=n+1)$.

More notations: If $G=\left(v_{\nu} E\right)$ is a graph and $v \in V$, we sometimes write $\operatorname{deg}_{G}(v)$ instead of $\operatorname{deg}(V)$ for the degree of v in G. Thin has advantage that if $H=(W, F)$ is a subgraph of G and w $\in W \subset V$, then we can distinguish between the diguce If w in H and its dequice in G. clearly

$$
\operatorname{deg}_{H}(w) \leq \operatorname{deg}_{G}(w)
$$

Euler's Theorem
We restate the theorem
Theorem: A graph $G=(U, E)$ is eulerion if and only if it is connected and the degree of every vertex in G is an even number.
Poof: The care where $|V|=1$ is trivial and so we will assume from now on that $|v|>1$.

We have already shown (in the last lecture) that if G is enlerian then G is connected and the degree of every vertex in G is a positive even number.

Conversely, suppose G is connected and $\operatorname{deg}_{G}(v)$ is a positive even number for every $v \in V$. According to the Lemma above, there is a circuit in G. Let t be the largest possible length of a circuit in G. Since G is finite, k makes sense. Let

$$
\sigma=\left(x_{1}, x_{2}, \ldots, x_{k+1}\right)
$$

be a circuit of length k, and $e_{i}=x_{i} x_{i+1}, i=1, \ldots, k$.
Note that $x_{k+1}=x_{1}$.
Let $H=(W, F)$ be the subgriph of G given by.

$$
W=V \text { and } F=E-\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}
$$

In other words, H is obtained from G by removing all the edges of σ from G (the vertices are retained though). Nome H reed not be connected. We aim lbuat each of the vertices $x_{1}, x_{2}, \ldots, x_{k}$ of H is isolated in H. In
other words, we claim that

$$
\begin{equation*}
\operatorname{deg}_{H}\left(x_{i}\right)=0 \quad i=1, \ldots, k . \tag{*}
\end{equation*}
$$

First note that $\operatorname{deg}_{H}(v)$ is an even number for every $v \in H$. Indeed, if $v \notin\left\{x_{1}, \ldots, x_{k}\right\}$, then $\operatorname{deg}_{H}(v)=\operatorname{deg}_{G}(v)$ and hence $\operatorname{deg}_{H 1}(r)$ is even (in font positive and even). If on the other hand $v=x_{i}$ for some $i \in\{1, \ldots, k\}$, then the numen of edges from the collection $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ incident on x_{i} is even, because every incoming edge is matched by an outgoing edge. Since

$$
\operatorname{deg}_{H}\left(x_{i}\right)=\operatorname{deg}_{G}\left(x_{i}\right)-\# A \text { edges } \sin \left\{e_{1}, \ldots, e_{k}\right\} \text { incident to } x_{i}
$$

it follows that $\operatorname{deg}_{H}(v)=\operatorname{deg}_{H}\left(x_{i}\right)$ is even.
We have to show $\operatorname{deg}_{H}\left(x_{i}\right)=0$. Suppose not. By the Lemma there is a circuit σ^{\prime} in H starting and ending at x_{i}. Putting together σ and σ^{\prime} we get a eirenit in G of length strictly langer than k. This contradicts the definition of k as the largest length of a circuit in G. Thus our $\operatorname{claim}(x)$ is tome.

Nat we claim that the edges e_{1}, \ldots, e_{k} are all the edges in G, ie. $E=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$. If we prove this we would have show on that G is euberian. Suppose there is an edge $e=y z$ in G such that $e \neq e_{i}$ for any $i \in\{1, \ldots, k\}$. Then e is an edge in H. It follows that $\operatorname{deg}_{H}(y) \neq 0 \quad\left(a b s o \operatorname{deg}_{H}(z) \neq 0\right)$. From (x) it follows that $y \notin\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. since G is counectel, the ere is a path

$$
\theta=\left(y_{1}, \ldots, y_{r}\right)
$$

from y th $x_{1} \quad\left(y_{1}=y\right.$ and $\left.y_{r}=x_{1}\right)$. It follows ttuat there is some $j \in\{2,3, \ldots, r\}$ such that $y_{j} \in\left\{x_{1}, \ldots, x_{k}\right\}$ but $y_{j-1} \notin\left\{x_{1}, \ldots, x_{k}\right\}$ (j is the "first time" that the path θ hits the set $\left.\left\{x_{1}, \ldots, x_{k}\right\}\right)$. The edge $y_{j-1} y_{j}$ is in H since $y_{j-1} \notin\left\{x_{1}, \ldots, x_{k}\right\}$. This means $\operatorname{deg}_{+1}\left(y_{j}\right) \geqslant 1$, which contradicts ((x), since $y_{j} \in\left\{x_{1}, \ldots, x_{k}\right\}$.

Hamilton graphs
Definition: Let $G=(V, E)$ be a graph. G is said to be hamiltonian if there exists a walk $\sigma=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

1. every vertex of G appears exactly once in σ
2. $x_{n} x_{1} \in E$
such a σ is called a hamiltonian cycle or a hamiltonian circuit.
Basic observations: Suppose $\sigma=\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right)$ is a thamilton circuit in a graph G. The following are easy to verify
3. If v is a vertex in G of degree 2 , then both the edges incident on v must be part of $\sigma_{0} i . t . \sigma$ traverses both edges

2 . σ is necessarily a eye.
3. σ has no proper sutcirenit, lie. σ has no subcireuit which $i s$ not σ itself.
4. If v is a vertex in σ and e, f are edges in σ incident on v, then none of the other edges of G incident on v occurs in σ

Examples (nou-existence of hamitomion cycle):
1.

The graph displayed on the left does not hove a Hamiltonian circuit as the following argument shows.

The degree 2 vertices are a, b, d, and e. If the graph has a hamiltonian cycle σ, by the first observation above, the edges $a c, a d, b c, b e, d c$ and ec are all part of σ. By the fourth obsanation only two edges inveident on c com occur in σ. However, $a c, b c$, de, and ec, all occur in σ. This is a contradiction. (Note that observations 2 and 3 are also violated, giving other proofs that a hamiltonian circuit does not exist.
2. In the graph below suppose we had a hamiltonian circuit σ. There are only too vertices in the graph which

have degree 2, namely a and g. Tom our first observation, all edges incident on a and g are in σ. In particular eg and ing are both traversed by σ. Next, since in ia traversed by σ, by the fourth obscuration, exactly one of if or it is traversed by σ. Suppose if is the edge bravencet by σ. Then ike cannot be traversed by σ. Let us delete it (see picture belovo). In the new graph, k has deguce
 two and σ continues to be a hamiltonian circuit in the new graph. It follows that σ must traverse bott $j k$ and $k h$ (by the first of our observations).

Next consider the vertex j. The edges ii and $j k$ are traversed by σ. By our fourth observation, f_{j} cannot be traversed by σ. Let us delete it. We now have the picture below. In this new picture, f has degree 2 , and so σ must traverse of and eff.

Now consider recess e. We have seen that eg and $f e$ lie on σ lie. σ traverses these two edges). This means that ed and els are not travused by σ, and so let us delete then (see
 picture below.

In the now graphs d and h have degree 2 , and so $b d, c d, c h$, and th must lie on σ. Now bf and bd are traversed by σ, which means $b a=a b$ cannot be traversed by σ, by our our fourth observations.

There and not there!
On the otter hand $\operatorname{deg}(a)=2$ and no by our first observation $a b$ has to be traversed by σ. So we have a contradiction (the edge $a b$ is on σ and it is not on σ at the same time). We arrived at thin contradiction by assuming that the edge io is on σ (and hance ike is not). By symmetry, if we had instead assumed it was on σ and not ij, we would have again arrived at a contradiction. Thus no hamiltonian circuit exists on our graph.

Example:
1.

Hamitonian but not euberian. Two vertices have dequee 3 .

Delete the edge given by lore dotted line and you have a hamiltonian circuit.
2. Eulerian but not hamiltonian:

This vertex has to be visited at least twice by any circuit going thorough all vertices.
suppose the graph above has a hamiltonian cycle. Call it σ. since $\operatorname{deg}(a)=\operatorname{deg}(b)=\operatorname{deg}(c)=\operatorname{deg}(d)=2$, the edges $a b, c d, a e, b e, c e, a n d$ de
must all be traversed by σ. This means four edges in σ, namely $a e, b e, c e$, and $d e$, ave incident to e. This violates the fourth observation above. Hence the graph is not hamiltonian.
3. The Petersen graph

The graph below is called the Petersen graph.

Some obvious properties:

1. It has 10 vertices and 15 edges.
2. Every vertex has degree 3 .
3. It is connected
4. It has no cycle of length 3 or 4 . All cycles are of length 5 or more.
Loom these obsewations its is not hand to see that the Petersen graph is not hamiltonian. An elementary proof involves a case by case elimination, and may be posted as a separate note later.
