Supplementary note
Diagonal lattice patters in the plane
Definition: A diagonal lattice fath in the plane is a curve made up of line segments that either go from a point (i, j) to the point $(i+1, j+1)$ or from a pint (i, j) to the point $(i+1, j-1)$.

On the left is a typical diagonal lattice pats. At each step (moving from left to right) the x-coordinate ineveres by one. The y-coordinate either increases by one or decrees by one.

Another definition, equivalent to the one above is: A diagonal lattice path in the plane is a sequence of pairs of interns

$$
\left(p_{0}, q_{0}\right),\left(p_{1}, q_{1}\right), \ldots,\left(p_{m}, q_{m}\right)
$$

such that for all $i=0,1,2, \ldots, k-1$, either
(a) $p_{i+1}=p_{i}+1$ and $q_{i+1}=q_{i}+1$ (a north east move)
(b) $p_{i+1}=p_{i}+1$ and $q_{i+1}=q_{i}-1$. (a south east move)

Diagonal lattice patters and usual lattice patties are closely linked. There is a ove-te-one correspondence betiveen them. Suppose $\left(m_{0}, n_{0}\right),\left(m_{1}, n_{1}\right), \ldots,\left(m_{k}, n_{k}\right)$ is a nounal lattice paths. Define $\left(p_{i}, q_{i}\right)$ by the formula

$$
\left[\begin{array}{c}
p_{i} \\
q_{i}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
m_{i} \\
n_{i}
\end{array}\right] \quad i=b_{3} \ldots, k .
$$

Then $\left(p_{0}, q_{0}\right), \ldots,\left(p_{k}, q_{k}\right)$ is a diagonal lattice pats. Conneraly, if $\left(p_{0}, q_{1}\right), \ldots,\left(p_{k}, q_{k}\right)$ is a diagonal lattice patter ten $\left(m_{0}, n_{0}\right), \ldots,\left(m_{k}, n_{k}\right)$ is a usual lattice
pots where

$$
\left[\begin{array}{l}
m_{i} \\
n_{i}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
p_{i} \\
q_{i}
\end{array}\right], \quad i=0, \ldots, k .
$$

Let $\left(p_{0}, f_{0}\right), \ldots,\left(p_{m}, f_{m}\right)$ be a diagonal lattice patter. The following assertions are easy to verify and the proofs are left to you. If all else fails use the above formulas, though simple combinatorial thinking should do the trick.

1. $p_{i}=p_{0}+i, \quad 0 \leq i \leq k$.
2. $p_{0}-i \leqslant q_{i} \subseteq p_{0}+i, \quad 0 \leq i \leq k$. The picture below may help.

The purple and the preen pattie are two possibilities. This is auslogons to the font that in naval lattice path $\left(m_{0}, n_{0}\right), \ldots,\left(m_{k}, n_{k}\right)$, $m_{0} \leq m_{i} \leq m_{0}+i$ and $n_{0} \leqslant n_{i} \leq n_{0}+i$.
3. Let the initial point $\left(p_{0}, q_{0}\right)$ be the origin, and the terminal point (the last point) be $(m, n), 1 . e$.

$$
\left(p_{0}, q_{0}\right)=(0,0),\left(p_{m}, q_{m}\right)=(m, n)
$$

From 2 we know that $-m \leq n \leq m \longleftarrow$ Important!
Let
$u=$ number of north east moves
$d=$ number of south east moves
Then

$$
u+d=m, \quad u-d=n
$$

and so

$$
u=\frac{m+n}{2}, d=\frac{m-n}{2}
$$

4. Let $m \in \mathbb{N}_{0}$ and n an integer sit. $-m \leq n \leq m$. Then the number of diagonal lattice patios from $(0,0)$ to (m, y) in

$$
\binom{m}{\frac{m+n}{2}}=\binom{m}{\frac{m-n}{2}} .
$$

5. Let $m \in \mathbb{N}_{0}$. If n does not satisfy the condition that $-m \leqslant n \leqslant m$, thess there are no diagonal lattice paths from $(0,0)$ to (m, n). (This is obvious from 3. above).
6. If $p_{0}+f_{0}$ is even, then all $p_{i}+q_{i}$ are even, and of $p_{0}+q_{0}$ is odd, then all $p_{i}+q_{i}$ are old.
