
MAT344 FALL 2022

PROBLEM SET 4

Due date: Nov 20, 2022 (on Crowdmark by midnight)

In what follows N, Z, R denote the set of positive integers, the set of integers, and
the set of real numbers respectively. N0 denotes the set of non-negative integers.

1. Suppose (an)∞n=0 satisfies the recursion relation an = (n−1)(an−1+an−2), n ≥ 2,
with initial conditions: a0 = 1 and a1 = 0. Show that (an)∞n=0 also satisfies the
recurrence relation

an = nan−1 + (−1)n, n ∈ N.

Hint: Consider bn = an − nan−1, n ∈ N, b0 = 1. Find a suitable recurrence
relation for (bn)∞n=0 and solve that recurrence relation.

Solution: Let bn, n ∈ N0, be as in the hint. Since a0 = 1 and a1 = 0, we have
b1 = 0− (1)(1) = −1. Thus b1 = −b0. Now suppose n ≥ 2. Then

bn = an − nan−1
= (an − (n− 1)an−1)− an−1
= (n− 1)an−2 − an−1
= −bn−1

Thus bn = −bn−1 for n ≥ 1 (we checked this for n = 1 earlier), and the initial con-
dition is b0 = 1. It then follows that bn = (−1)n, n ∈ N0.1 Since an − nan−1 = bn
for n ∈ N, it follows that an−nan−1 = (−1)n for n ∈ N. This proves the assertion
in the question. �

2. Give a lattice path proof of(
3n

2n

)
=

n∑
k=0

(
n+ k

n

)(
2n− k − 1

n− 1

)
, n ∈ N.

Hint: Consider (usual, not diagonal) lattice paths from (0, 0) to (a, b) for a
suitable lattice point (a, b), such that the total number of such paths is the left
side. Count these paths in a different way by looking at the first time such a
path hits a suitable vertical line x = c (or, depending on your choice of (a, b), a
suitable horizontal line y = c). With the right choice of a, b, and c, you should
be able to do the problem. Something similar (but with diagonal lattice paths
rather than usual lattice paths) was suggested in the “Problems Worth Thinking
About” section of the plans for week 8.

1One doesn’t need any advanced theory for this. Just use the fact that the initial value of bn
is 1, and successive values are negatives of each other.
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Solution: Let S be the set of lattice paths from (0, 0) to (2n, n). Then |S| =
(
3n
2n

)
.

For k ∈ {0, 1, . . . , n} let Sk be the subset of S consisting of those paths in S which
hit the line x = n + 1 for the first time at (n + 1, k). Equivalently, Sk is the set
of paths which cross the region between the vertical lines x = n and x = n + 1
at “level k”, i.e. along the line segment from (n, k) to (n + 1, k). The following
picture (with n = 7 and k = 4) may help. The point is that to get from (0, 0)
to (2n, n), you have to cross the green stream, and you can only cross the stream
along bridges like the orange one.

It is clear that every path in S lies in a unique subset Sk, and hence S =
⋃n
k=0 Sk,

with Si ∩ Sj = ∅ if i 6= j. Thus

|S| =
n∑
k=0

|Sk|.

Now an element in Sk is the same as a lattice path from (0, 0) to (n, k), followed by
the line segment from (n, k) to (n+ 1, k), followed by a lattice path from (n+ 1, k)
to (2n, n). In other words it is completely determined by the red and purple paths
in the picture (since the orange line segment is a must for all paths in Sk). The

number of red paths is
(
n+k
n

)
and the number of purple paths is the same as the

number of lattice paths from (0, 0) to (2n− (n+ 1), n− k) = (n− 1, n− k). This

number is
(
2n−k−1
n−1

)
. So |Sk| =

(
n+k
n

)(
2n−k−1
n−1

)
. Thus(

3n

2n

)
= |S| =

n∑
k=0

|Sk| =
n∑
k=0

(
n+ k

n

)(
2n− k − 1

n− 1

)
.

as required.
Note: One can also look at lattice paths from (0, 0) to (n, 2n). Then our green
stream will be horizontal. �

3. Let G = (V, E) be a graph such that 2 ≤ |V | <∞. Suppose 2 degG(v) ≥ |V |−1
for all v ∈ V . Show that G is connected. Hint: Try a proof by contradiction.

Solution: Suppose G is not connected. Then there exist x, y ∈ V , x 6= y, such that
there is no path from x to y. For any vertex v of G, let Nv denote the neighbourhood
of v, i.e. Nv is the set of vertices in G adjacent to v. Note that degG(v) = |Nv|.
Since there is no path from x to y, it is clear that Nx ∩ Ny = ∅. For the same
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reason, y /∈ Nx and x /∈ Ny. Thus Nx, Ny, and {x, y} are three disjoint subsets of
V . It follows that

|V | ≥ |Nx|+ |Ny|+ |{x, y}| ≥ 1
2 (|V | − 1) + 1

2 (|V | − 1) + 2 = |V |+ 1

which is impossible. Hence G is connected. �

4. Let X be a finite set and A1, A2, . . . , An subsets of X. For any subset T of [n],
let AT =

⋂
j∈T Aj , with the understanding that if T = ∅, then AT = X. Fix a

subset S of [n]. Let Y be the subset of X consisting of all elements of X which
belong to Ai for every i ∈ S, but for no other indices. In other words,

Y = {x ∈ X | x ∈ AS and x /∈ Ai if i /∈ S}.
Show that

|Y | =
∑

S⊂T⊂[n]

(−1)|T\S||AT |.

The sum is taken over subsets T of [n] which contain S.

Solution: Let D = [n] r S. For i ∈ D, let Bi = Ai ∩AS . Then

Y = AS r

(⋃
i∈D

Bi

)
.

By the Inclusion-Exclusion principle

|Y | =
∑
E⊂D

(−1)|E|

∣∣∣∣∣⋂
i∈E

Bi

∣∣∣∣∣,
with the understanding that if E is empty then

⋂
i∈E Bi = AS . There is a bijective

correspondence between subsets of D and subsets of [n] which contain S, namely a
subset E of D corresponds to T = S ∪ E, and a subset T of [n] which contains S
corresponds to E = T r S. It is straightforward to check the process of going from
E to T is the inverse of the process of going from T to E. Moreover, for E a subset
of D, ⋂

i∈E
Bi =

⋂
i∈E

(Ai ∩AS) = AS∪E .

From these observations, the formula for |Y | above translates to the formula below:

|Y | =
∑

S⊂T⊂[n]

(−1)|T\S||AT |.

�

5. For n ∈ N, let ∆n be the number of derangements of [n] and set ∆0 = 1. Recall
that we proved in class that

∆n =

n∑
k=0

(−1)n
(
n

k

)
(n− k)! = n!

n∑
k=0

(−1)k/k!.

Show combinatorially, without using the above formulas, that

∆n = (n− 1)(∆n−1 + ∆n−2)

for n ≥ 2.
3



Solution: For clarity, the solution is more elaborate than usual.

Case n = 2: It is clear that there are no derangements possible for the set [1].
This means ∆1 = 0. Also the only derangement possible for [2] = {1, 2} is the
permutation which sends 1 to 2 and 2 to 1. Thus ∆2 = 1. It is immediate that
∆2 = (2− 1)(∆1 + ∆0), since, by definition, ∆0 = 1. We are therefore done for the
case n = 2.

Case n ≥ 3: Suppose n ≥ 3. Let Dn be the set of derangements of [n] and for
i = 2, 3, . . . , n. let Si = {f ∈ Dn | f(1) = i}. Then the Si are pairwise disjoint, i.e.
Si ∩ Si = ∅ for i 6= j, i, j ∈ {2, 3, . . . , n}. Moreover, Dn =

⋃n
i=2 Si.

For each i ∈ {2, 3, . . . , n}, Si breaks up further into disjoint subsets Ai and Bi,
where

Ai = {f ∈ Si | f(i) = 1}
and

Bi = {f ∈ Si | f(i) 6= 1}.

Claim: |Ai| = ∆n−2 for i = 2, 3, . . . , n.

Proof. The restriction of any f ∈ Ai to [n]r {1, i} is a derangement of [n]r {1, i},
and conversely, given a derangement g of [n] r {1, i}, the map f : [n] → [n] given
by f(1) = i, f(i) = 1, and f(x) = g(x) for x ∈ [n] r {1, i}, is a derangement of [n]
which is in Ai. Thus

|Ai| = ∆n−2, i = 2, 3, . . . , n,

as claimed.

Claim: |Bi| = ∆n−1, i = 2, 3, . . . , n.

Proof. Suppose f ∈ Bi. Let j = f−1(1). Then j is not i, by definition of Bi, and j
is not 1 since f is a derangement. Define g : [n] r {1} → [n] r {1} by the rule

g(x) =

{
f(x) when x 6= j;

i when x = j.

Then g is a derangement of [n]r{1}. Conversely, given a derangement g of [n]r{1},
with j = g−1(i), we can define an element f of Bi by setting f(1) = i, f(j) = 1,
and f(x) = g(x) for x ∈ [n] r {1, j}. Thus the correspondence f 7→ g described
above gives a bijective correspondence between Bi and the set of derangements of
[n] r {1}. It follows that

|Bi| = ∆n−1, i = 2, 3, . . . , n,

proving the claim.
Since |Si| = |Ai|+ |Bi|, we therefore have |Si| = ∆n−2 + ∆n−1. In other words,

∆n = |Dn| =
n∑
i=2

|Si| =
n∑
i=2

(∆n−1 + ∆n−2)

= (∆n−1 + ∆n−2)

n∑
n=2

1

= (∆n−1 + ∆n−2)(n− 1),
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proving the assertion of the problem. (We have used the fact that n ≥ 3 by finding
distinct elements 1, i, and j in the above argument.) �

6. For n ∈ N0, let an be the number of non-negative integer solutions of

3a+ b+ 7c+ d = n

with the added conditions that b ≤ 2, c ≥ 1, and d ≤ 6. Find the generating
function for (an)∞n=0. Use this to determine an for n ∈ N0.

Solution: For n ∈ N0, let αn be the number of non-negative integer solutions of
3a = n, βn the number of integer solutions of b = n with 0 ≤ b ≤ 2, γn the number
of integer solutions of 7c = n with c ≥ 1, and δn the number of integer solutions of
d = n with d ≥ 6. It is clear that αn = 0 if n is not a multiple of 3 and α3k = 1
for k ∈ N0; βn = 1 for 0 ≤ n ≤ 2 and βn = 0 for n ≥ 3; γ0 = 0, γn = 0 if n is not
a multiple of 7, and γ7k = 1 for k ≥ 1; and finally δn = 1 for n ≤ 6 and δn = 0 for
n ≥ 7. Let Fα, Fβ , Fγ , and Fδ be the generating functions of (αn)∞n=0, (βn)∞n=0,
(γn)∞n=0, and (δn)∞n=0 respectively, then

Fα(x) =

∞∑
n=0

αnx
n = 1 + x3 + x6 + · · · =

∞∑
n=0

(x3)n =
1

1− x3

Fβ(x) =

∞∑
n=0

βnx
n = 1 + x+ x2 =

1− x3

1− x
.

Fγ(x) =

∞∑
n=0

γnx
n = x7 + x14 + x21 + · · · =

∞∑
n=1

(x7)n = x7
∞∑
n=0

(x7)n =
x7

1− x7
.

Fδ(x) =

∞∑
n=0

δnx
n = 1 + x+ x2 + x3 + x4 + x5 + x6 =

1− x7

1− x
.

Let (an)∞n=0 be as in the problem and F (x) its generating function. Then

F (x) = Fα(x)Fβ(x)Fγ(x)Fδ(x)

=
1

1− x3
1− x3

1− x
x7

1− x7
1− x7

1− x

=
x7

(1− x)2

= x7
∞∑
m=0

(m+ 1)xm

=

∞∑
n=7

(n− 6)xn.

Thus

an =

{
0 when n ≤ 6

n− 6 when n ≥ 7.

�
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