
MAT344 FALL 2022

PROBLEM SET 3

Due date: Nov 6, 2022 (on Crowdmark by midnight)

In what follows N, Z, R denote the set of positive integers, the set of integers, and
the set of real numbers respectively. N0 denotes the set of non-negative integrs.

Bipartite graphs. A graph G = (V, E) is said to be bipartite if there are two
non-empty subsets V1 and V2 such that V1 ∩ V2 = ∅, V1 ∪ V2 = V and every edge
joins a vertex in V1 to a vertex in V2. It is easy to see that G is bipartite if and
only if every walk of the form (x1, . . . , xn) with xn = x1 has even length. You don’t
have to submit a proof of this (easy) fact, but you might try and work out a proof
for yourself. One typically tries to draw the vertices of V1 on the left and V2 on the
right as below:

Figure 1. A bipartite graph drawn with V1 on the left and V2 on
the right

Sometimes it is easier (and uses less paper) to draw it as in Figure 2.

Figure 2. A bipartite graph with the V1 and V2 arranged in hor-
izontal rows

It should be pointed out that a bipartite graph need not be drawn this way. In
fact it many bipartite graphs are drawn in a way that it is difficult to make out at
first glance (or even subsequent glances) that they are bipartite.
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1. Show that the following two graphs are bipartite by either re-drawing them
according to the scheme in Figure 1 or the scheme in Figure 2. You can draw
one according to one scheme and the other according to the other one, or stick
to one scheme for both.
(a)

(b)
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Solution: Here is a drawing of (a) which fits into the scheme in Figure 1:

There are many other possibilities for (a), using either scheme. In every possibil-
ity the two disjoint non-empty subsets of V , whose union is V , are {a, c, e, g, i, k,m, n, o}
and {b, d, f, h, j, l, p, q} and all edges are from vertices in one set to the other.

And here is one for (b) (this time using the scheme in Figure 2):

You are of course free to use the scheme in Figure 1 too. The partition of the
set of vertices is {a, c, e, h, j, l,m, n, o} and {b, d, f, g, i, k, p}. �
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2. Let G = (V, E) be a bipartite graph with V1 and V2 being the splitting of V
given in the definition of a bipartite graph.
(a) Show that if G is hamiltonian then |V1| = |V2|.
(b) Use part (a) to show that the graphs in Problem1 are not hamiltonian.

Solution: Suppose (v1, v2, . . . , vn) is a hamiltonian cycle in G, then (using the
convention of the textbook) the vi are distinct, V = {v1, . . . , vn}, and vnv1 is an
edge. Since V is bipartite, V can be split into a union two disjoint non-empty
subsets such that every edge in G is from a vertex in one of these subsets to a
vertex in the other subset. Denote by V1 the subset containing v1, and by V2 the
other subset. Since v1v2 is an edge, v2 ∈ V2. Clearly vi is in V1 if i is odd, and is
in V2 if i is even. Since vnv1 is an edge, we have vn ∈ V2, which means n is even,
say n = 2k for some k ∈ N. From what we said, v2i−1 ∈ V1, for i = 1, . . . , k, and
v2i ∈ V1 for i = 1, . . . , k. Thus |V1| = k = |V2|. This proves (a).

For part (b), in the first graph in 1, which is bipartite, we can take V1 =
{a, c, e, g, i, k,m, n, o} and V2 = {b, d, f, h, j, l, p, q}. Since |V1| = 9 and |V2| = 8, we
have |V1| 6= |V2|, and so this is not a hamiltonian graph. For the second graph, which
too is bipartite, we have V1 = {a, c, e, h, j, l,m, n, o} and V2 = {b, d, f, g, i, k, p}, and
again it is clear that |V1| 6= |V2| since 9 6= 7, and hence this graph is not hamiltonian
either. �

Complete graphs. A complete graph is a graph which has an edge joining any
two distinct vertices. It is clear that a complete graph is connected, and any two
complete graphs with the same number of vertices are isomorphic. You may use
these facts in the problems that follow. We denote by Kn the complete graph whose
set of vertices V is [n], i.e. V = {1, 2, . . . , n}.

3. Let G = (V, E) be a complete graph.
(a) Show that G is hamiltonian. Note that it is enough to show that Kn is

hamiltonian.
(b) Suppose |V | = n. How many edges does G have?

Solution: We first do (a). If n = 1 this is clear, since a single vertex connected
graph is considered hamiltonian. Otherwise, in Kn, consider the path (v1, . . . , vn)
where vi = i, i = 1, . . . , n. This is clearly a hamiltonian cycle.

For part (b) we note that in Kn every vertex has degree n− 1, and there are n
vertices. Hence

∑
v∈V deg (v) = n(n− 1). It follows that |E| = n(n− 1)/2. There

are many other solution to this problem. For example, since any two vertices are
adjacent, an edge is the same as a choice of two distinct vertices, and there are(
n
2

)
= n(n− 1)/2 such choices. �

4. A graph G has 70 edges. What is the minimal number of vertices possible in G?

Solution: Let µ be the minimum asked for.
Since Kn has Kn−1 as a subgraph for n ≥ 2 (this is clear from the definition),

we must have n(n− 1)/2 is an increasing function of n as n varies over N.
Amongst all graphs with n vertices, the one with the largest number of edges is

the complete graph Kn, since every possible choice of two distinct vertices forms
an edge. Therefore if H = (W,F ) is a graph with |W | = n, then |F | ≤ n(n− 1)/2.
It follows that if n ≤ 12, then |F | ≤ n(n − 1)/2 ≤ 12(12 − 1)/2, for, as we argued
above, n(n − 1)/2 is an increasing function of n ∈ N. In other words, |F | ≤ 66.
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Thus no graph with 12 or fewer vertices can have more 66 edges. Since our graph
G has 70 edges, from what we just argued, |V | > 12. In particular µ > 12, for G is
an arbitrary graph with 70 edges.

Let G = (V,E) be the graph with exactly 13 vertices v1, . . . , v13, with E being
the set, E = {vjvj | 1 ≤ i < j ≤ 12, vivj} ∪ {v1v13, v2v13, v3v13, v4v13}. Then the
subgraph with v13 deleted (along with all edges incident on v13) is the complete
graph K12. It is clear that |E| = 66 + 4 = 70. It follows that µ ≤ 13. Since µ > 12,
we have µ = 13. �

Planar graphs. Recall that a planar graph is a one which has a drawing (on the
plane) such that no two edges cross each other (see Lecture 12). In class we showed
that K5 is not planar.

5. Show that Kn is not planar for n ≥ 5.

Solution: We will use the fact that a necessary condition for a connected graph
G = (V, E) (with |V | ≥ 3) to be planar is that 3|V | − 6 ≥ |E| (see Lecture 12,
p.12 or Theorem 5.33, Chapter 5, § 5.5 of the textbook). In our case |V | = n and
|E| = n(n−1)/2 and so our strategy is to show that 3n−6 < n(n−1)/2 for n ≥ 5.
In other words, after re-arranging the terms in the inequality, it is sufficient for us
to prove that

(∗) n2 − 7n+ 12 > 0,

for n ≥ 5.
Let f : R → R be the function given by f(x) = x2 − 7x + 12, x ∈ R. Its

derivative is f ′(x) = 2x− 7 which is positive for x > 7/2. This means f is strictly
increasing in the interval (3.5,∞), in particular in [5, ∞). Now f(5) = 2 > 0 and
hence f(n) ≥ f(5) = 2 > 0 for n ≥ 5. Thus (∗) holds for n ≥ 5. It follows Kn is
not planar when n ≥ 5. �
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