
MAT344 FALL 2022

PROBLEM SET 2

Due date: Oct 16, 2022 (on Crowdmark by midnight)

In what follows N, Z, R denote the set of positive integers, the set of integers, and
the set of real numbers respectively. N0 denotes the set of non-negative integrs.

1. Suppose we have a grid of 6 equidistant horizontal lines and 76 equidistant ver-
tical lines. Colour each of the intersection points with one of five colours. Show
that there is at least one rectangle (not necessarily of size 1×1) in the grid with
all four vertices of the same colour.

The picture below illustrates a possible colouring scheme.

Hint: Use the pigeonhole principle multiple times, including the generalised
version.

Solution: By grid points we mean the intersection points in the grid. Let C be
the set of colours used for colouring the grid points.1 Clearly that |C| = 5. Let V
be the set of vertical lines in the grid and H the set of horizontal lines in the grid.
We have to find a set of two distinct vertical lines A = {`, `′} ⊂ V , and a set of two
distinct horizontal lines B = {h, h′} ⊂ H, such that the four intersection points
defined by ` ∩ h, ` ∩ h′, `′ ∩ h, and `′ ∩ h′ have the same colour.

If ` ∈ V is a vertical line, then by the Pigeon Hole principle there is (at least)
one set of distinct horizontal lines B(`) = {h(`), h′(`)} such that the two points
defined by the two ntersections h(`)∩ ` and h′(`)∩ `, have the same colour, say c`.
Define a map

f : V → C

1In the picture C = {Orange, Red, Purple, Green, Blue}.
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by the formula f(`) = c`. Now

|V | = 76 = (15) · 5 + 1 = (16− 1) · |C|+ 1 > (16− 1) · |C|.

By the Strong Pigeon Hole Principle, we have a colour c ∈ C and 16 vertical lines,
`1, . . . , `16, such that f(`1) = f(`2) = · · · = f(`16) = c.

Now there are
(
6
2

)
= 15 possibilities for the set B = {h, h′} mentioned in the

first paragraph. This means, once again by the Pigeon Hole Principle, at least two
of the 16 sets B(`1), . . . , B(`16), are the same, say B(`m) = B(`n), with m 6= n.
Let A = {`m, `n} and B = B(`m) = B(`n). Then A and B are our required sets.
The four vertices defined by them are all coloured c. �

2. Give a combinatorial proof of the following identity

7n − 6n =
n∑

i=1

6i−17n−i.

Hint: Consider strings of length n from the set {0, 1, 2, 3, 4, 5, 6}.

Solution: The left side counts the number of strings of length n from the set
{0, 1, 2, . . . , 6} which contain at least one 0. The ith summand on the right side is
the number of strings where 0 occurs for the first time at the ith place. �

3. Let n ∈ N. Give a proof using lattice paths of the identity(
2n

n

)
=

(
n− 1

0

)
+

(
n

1

)
+

(
n+ 1

2

)
+ · · ·+

(
2n− 1

n

)
.

The choice of the lattice path type (usual or diagonal) is left to you. It might be
simpler to use usual lattice paths for this problem rather than the diagonal ones.

Solution: Let S be the set of lattice paths from (0, 0) to (n, n). For 0 ≤ j 6= n,
let Sj = {σ ∈ S | the first time σ hits the vertical line x = n is at (n, j)}. Then
Sj are pairwise disjoint and ∪nj=0Sj = S. Thus

(∗) |S| =
n∑

j=0

|Sj |.

There is only one lattice path from (n, j) to (n, n). (This is clear since lattice paths
are not allowed to move left. One can also prove the assertion by using the formula(
n−j
0

)
=
(
n−j
n−j
)

= 1.)

Note also that a lattice path from (0, 0) to (n, j) hits the line x = n for the first
time at (n, j) if and only if in the previous step it was at (n− 1, j).

Therefore the number of paths in Sj is the same as the number of lattice paths

from (0, 0) to (n− 1, j). Thus |Sj | =
(
n+j−1

j

)
. From (∗) we therefore get(

2n

n

)
=

n∑
j=0

(
n+ j − 1

j

)
,

which is what we were required to prove. �
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4. Let n and k be integers such that n ≥ 2 and 1 ≤ k ≤ n. Let S be the set
of diagonal lattice paths from (k, k) to (2n, 0) which pass through the point
(2n − k, k). How many paths in S are such that they touch the line y = k − 1
for the first time at the point (2n− k + 1, k − 1)?

Solution: It is easy to see that there is only one diagonal lattice path from the
point (2n− k + 1, k − 1) to (2n, 0). If the first time a diagonal lattice path σ from
(k, k) hits y = k − 1 is at (2n− k + 1, k − 1), then σ must be at (2n− k, k) in the
previous step. Thus the problem amounts to finding the number of diagonal lattice
paths from (k k) to (2n−k, k) which never dip below the line y = k. This is clearly
the same as the number of diagonal lattice paths from (0, 0) to (2(n− k), 0) which
never dip below the x-axis. Thus the answer is

Cn−k =
1

n− k + 1

(
2(n− k)

n− k

)
.

�

5. Let n ≥ 3. Use induction to prove that the sum of the internal angles of a convex
n-gon is 180(n− 2).

Solution: This is straightforward. It is well known for triangles. If n ≥ 4, label
the vertices v1, . . . , vn so that vi is adjacent to vi+1 and vn is adjacent to v1. Draw
a line from v1 to v3 to break up the convex n-gon into an (n− 1)− gon and a tri-
angle. Apply the induction hypothesis and the base case (i.e. the triangle case). �

6. Let n ∈ N. Consider the series

f(n) =
1

1 · 2
+ +

1

2 · 3
+ · · ·+ 1

n · (n+ 1)

Experiment with a few values of n and guess a formula for f(n). Prove your
conjecture using induction.

Solution: Easy to guess that f(n) =
n

n+ 1
, n ∈ N. A straightforward induc-

tion proves this. �
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