MAT344 FALL 2022 PROBLEM SET 1

Due date: Oct 2, 2022 (on Crowdmark by midnight)

In what follows N, Z, R denote the set of positive integers, the set of integers, and the set of real numbers respectively. N_0 denotes the set of non-negative integers.

1. How many arrangements are there of the 7 letters in ADAMANT?

Solution: There are two ways of doing this problem.

First Way. Pick three spots out of seven to slot the A's in, and then distribute D, M, N, T into the remaining four spots, in any way you can. This accounts for $\binom{7}{3}(4!) = \frac{7!}{3!}$ number of ways.

Second Way. There are 7! ways of permuting 7 objects. However, for any arrangement of the letters, the three A's can be arbitrarily permuted amongst themselves to give the same arrangement. We once again get $\binom{7}{3}(4!)$ as the answer.

2. Let $k \ge n$. Give a **combinatorial proof** of the identity

$$\sum_{r=0}^{n} \binom{n}{r} \binom{k}{r} = \binom{n+k}{n}.$$

Solution: Split S into two disjoint sets: A = [n] and $B = \{n + 1, ..., n + k\}$. Picking n elements from S is the same as picking k elements from S, or what is the same thing, picking a subset C of S with |C| = k. Let $r = |C \cap A|$. Then $k - r = |C \cap B|$. Now r can be any number in $\{0, 1, ..., n\}$. For a fixed $r \in \{0, 1, ..., n\}$ there are $\binom{n}{r}$ ways of picking $C \cap A$, and $\binom{k}{k-r}$ ways of picking $C \cap B$. It follows that there are $\sum_{r=0}^{n} \binom{n}{r} \binom{k}{r}$ ways of picking C such that |C| = k. In other words $\binom{n+k}{k} = \sum_{r=0}^{n} \binom{n}{r} \binom{k}{r}$. Since $\binom{n+k}{k} = \binom{n+k}{n}$, we are done.

3. Let $n \ge 9$ be an integer. Give a combinatorial proof of the identity

$$\binom{n}{9} = \sum_{k=4}^{n-5} \binom{k-1}{3} \binom{n-k}{5}$$

Solution: The left side counts the number of subsets A of [n] such that |A| = 9. Let A be such a set and write the elements of A in ascending order as $x_1 < \cdots < x_9$. Then $k = x_4$ must be such that $0 \le k \le n-5$. Conversely, given $k \in \{4, 5, \ldots, n-5\}$, there are $\binom{k-1}{3}$ ways of picking three elements in [k-1], written in ascending order as $x_1 < x_2 < x_3$, and $\binom{n-k}{5}$ ways of picking five elements from $\{k+1, k+2, n\}$, written in ascending order as $x_5 < x_6 < x_7 < x_8 < x_9$. Setting $k = x_4$ the set $A = \{x_1, \ldots, x_9\}$ has size 9. Thus $\binom{n}{9} = \sum_{k=4}^{n-5} \binom{k-1}{3} \binom{n-k}{5}$.

4. In how many ways can you distribute 12 identical objects to 5 people if the first person can only have 4 or 5 objects and the second person cannot have more than 3 objects?

Solution: Let us first solve the problem without the constraint on the second person. The constraint on the first person amounts to finding the sum of the number of non-negative integer solutions of $x_2 + x_3 + x_4 + x_5 = 8$ and the number of non-negative integer solutions of $x_2 + x_3 + x_4 + x_5 = 7$. From this we have to subtract the number of solutions which violate the second constraint, i.e. the ones for which $x_2 \ge 4$. In other words we have to remove the $\binom{7}{3}$ solutions of $x_2 + x_3 + x_4 + x_5 = 8$ such that $x_3 + x_4 + x_5 \le 4$, as well as the $\binom{6}{3}$ solutions of $x_2 + x_3 + x_4 + x_5 = 7$ such that $x_3 + x_4 + x_5 \le 3$. The answer is $\binom{11}{3} + \binom{10}{3} - \binom{7}{3} - \binom{6}{3}$.

Diagonal Lattice Paths. Recall that there is another kind of lattice path, the so-called *diagonal lattice path*, that is common in the literatute. These consist of steps from (i, j) to either (i + 1, j + 1) or (i + 1, j - 1). Recall that the number of diagonal lattice maths from (0, 0) to (m, n) is C(m, (m - n)/2) where our convention is that for a real number r, C(m, r) = 0 if r does not belong to $\{0, 1, \ldots, m\}$.

5. Let $n \in \mathbf{N}$. Assume that there is a diagonal lattice path from (0, 0) to (n, 3). Prove combinatorially that the number of diagonal lattice paths from (0, 0) to (n, 3) which dip below the line y = -1 is C(n, (n + 7)/2).

FIGURE 1. The path on the left dips below the line y = -1 but the path on the right does not.

Solution: For brevity, by a path we will mean a diagonal lattice path (for this solution). Let S be the set of paths from (0, 0) to (n, 3). A path dips below the line y = -1 if and only if it hits the line y = -2. Let $\sigma \in S$, and let k = k be the first time σ hits the line y = -2. Let σ_1 be the portion of σ between (0, 0) and (k, -2) and σ_2 the portion between (k, -2) and (n, 3). Reflect σ_2 about the line y = -2 and get a path τ_2 . It is clear that τ_2 is a path from (k, -2) to (n, -7), since -2 is exactly midway between 3 and -7. Let τ be the lattice path from (0, 0) to (n, -17) which is σ_1 followed by τ_2 . Thus σ gives rise to a path τ from (0, 0) to (n, -17).

Conversely, if τ is a path from (0,0) to (n, -17), it must hit the line y = -2. Let k be the first time it does, and break up τ into τ_1 and τ_2 , with τ_1 being the portion of τ on or before (k, -2), and τ_2 the portion from (k, -2) to (n, -7). Reflect τ_2 about the line y = -2 to get a path σ_2 from (k, -2) to (n, 3). Let σ be the path which is τ_1 followed by σ_2 . It is clear that $\sigma \in S$ since it must dip below y = -1 if it has the point (k, -2) on it.

The two processes are clearly inverses of each other and give a bijective correspondence between S and the set of paths from (0, 0) to (n, -7). The number of paths from (0, 0) to (n, -7) is C(n, (n + 7)/2) and hence we are done.