MAT344 FALL 2022

PROBLEM SET 1

Due date: Oct 2, 2022 (on Crowdmark by midnight)
In what follows $\mathbf{N}, \mathbf{Z}, \mathbf{R}$ denote the set of positive integers, the set of integers, and the set of real numbers respectively. \mathbf{N}_{0} denotes the set of non-negative integers.

1. How many arrangements are there of the 7 letters in ADAMANT?

Solution: There are two ways of doing this problem.
First Way. Pick three spots out of seven to slot the A's in, and then distribute D, M, N, T into the remaining four spots, in any way you can. This accounts for $\binom{7}{3}(4!)=\frac{7!}{3!}$ number of ways.
Second Way. There are 7 ! ways of permuting 7 objects. However, for any arrangement of the letters, the three A 's can be arbitrarily permuted amongst themselves to give the same arrangement. We once again get $\binom{7}{3}(4!)$ as the answer.
2. Let $k \geq n$. Give a combinatorial proof of the identity

$$
\sum_{r=0}^{n}\binom{n}{r}\binom{k}{r}=\binom{n+k}{n}
$$

Solution: Split S into two disjoint sets: $A=[n]$ and $B=\{n+1, \ldots, n+k\}$. Picking n elements from S is the same as picking k elements from S, or what is the same thing, picking a subset C of S with $|C|=k$. Let $r=|C \cap A|$. Then $k-r=|C \cap B|$. Now r can be any number in $\{0,1, \ldots, n\}$. For a fixed $r \in\{0,1, \ldots, n\}$ there are $\binom{n}{r}$ ways of picking $C \cap A$, and $\binom{k}{k-r}$ ways of picking $C \cap B$. It follows that there are $\sum_{r=0}^{n}\binom{n}{r}\binom{k}{r}$ ways of picking C such that $|C|=k$. In other words $\binom{n+k}{k}=\sum_{r=0}^{n}\binom{n}{r}\binom{k}{r}$. Since $\binom{n+k}{k}=\binom{n+k}{n}$, we are done.
3. Let $n \geq 9$ be an integer. Give a combinatorial proof of the identity

$$
\binom{n}{9}=\sum_{k=4}^{n-5}\binom{k-1}{3}\binom{n-k}{5} .
$$

Solution: The left side counts the number of subsets A of $[n]$ such that $|A|=9$. Let A be such a set and write the elements of A in ascending order as $x_{1}<\cdots<x_{9}$. Then $k=x_{4}$ must be such that $0 \leq k \leq n-5$. Conversely, given $k \in\{4,5, \ldots, n-5\}$, there are $\binom{k-1}{3}$ ways of picking three elements in $[k-1]$, written in ascending order as $x_{1}<x_{2}<x_{3}$, and $\binom{n-k}{5}$ ways of picking five elements from $\{k+1, k+2, n\}$,
written in ascending order as $x_{5}<x_{6}<x_{7}<x_{8}<x_{9}$. Setting $k=x_{4}$ the set $A=\left\{x_{1}, \ldots, x_{9}\right\}$ has size 9. Thus $\binom{n}{9}=\sum_{k=4}^{n-5}\binom{k-1}{3}\binom{n-k}{5}$.
4. In how many ways can you distribute 12 identical objects to 5 people if the first person can only have 4 or 5 objects and the second person cannot have more than 3 objects?

Solution: Let us first solve the problem without the constraint on the second person. The constraint on the first person amounts to finding the sum of the number of non-negative integer solutions of $x_{2}+x_{3}+x_{4}+x_{5}=8$ and the number of nonnegative integer solutions of $x_{2}+x_{3}+x_{4}+x_{5}=7$. From this we have to subtract the number of solutions which violate the second constraint, i.e. the ones for which $x_{2} \geq 4$. In other words we have to remove the $\binom{7}{3}$ solutions of $x_{2}+x_{3}+x_{4}+x_{5}=8$ such that $x_{3}+x_{4}+x_{5} \leq 4$, as well as the $\binom{6}{3}$ solutions of $x_{2}+x_{3}+x_{4}+x_{5}=7$ such that $x_{3}+x_{4}+x_{5} \leq 3$. The answer is $\binom{11}{3}+\binom{10}{3}-\binom{7}{3}-\binom{6}{3}$.

Diagonal Lattice Paths. Recall that there is another kind of lattice path, the so-called diagonal lattice path, that is common in the literatute. These consist of steps from (i, j) to either $(i+1, j+1)$ or $(i+1, j-1)$. Recall that the number of diagonal lattice maths from $(0,0)$ to (m, n) is $C(m,(m-n) / 2)$ where our convention is that for a real number $r, C(m, r)=0$ if r does not belong to $\{0,1, \ldots, m\}$.
5. Let $n \in \mathbf{N}$. Assume that there is a diagonal lattice path from $(0,0)$ to $(n, 3)$. Prove combinatorially that the number of diagonal lattice paths from $(0,0)$ to $(n, 3)$ which dip below the line $y=-1$ is $C(n,(n+7) / 2)$.

Figure 1. The path on the left dips below the line $y=-1$ but the path on the right does not.

Solution: For brevity, by a path we will mean a diagonal lattice path (for this solution). Let S be the set of paths from $(0,0)$ to $(n, 3)$. A path dips below the line $y=-1$ if and only if it hits the line $y=-2$. Let $\sigma \in S$, and let $k=k$ be the first time σ hits the line $y=-2$. Let σ_{1} be the portion of σ between $(0,0)$ and $(k,-2)$ and σ_{2} the portion between $(k,-2)$ and $(n, 3)$. Reflect σ_{2} about the line $y=-2$ and get a path τ_{2}. It is clear that τ_{2} is a path from $(k,-2)$ to $(n,-7)$, since -2 is exactly midway between 3 and -7 . Let τ be the lattice path from $(0,0)$ to $(n,-17)$ which is σ_{1} followed by τ_{2}. Thus σ gives rise to a path τ from $(0,0)$ to ($n,-17$).

Conversely, if τ is a path from $(0,0)$ to $(n,-17)$, it must hit the line $y=-2$. Let k be the first time it does, and break up τ into τ_{1} and τ_{2}, with τ_{1} being the portion of τ on or before $(k,-2)$, and τ_{2} the portion from $(k,-2)$ to $(n,-7)$. Reflect τ_{2} about the line $y=-2$ to get a path σ_{2} from $(k,-2)$ to $(n, 3)$. Let σ be the path which is τ_{1} followed by σ_{2}. It is clear that $\sigma \in S$ since it must dip below $y=-1$ if it has the point $(k,-2)$ on it.

The two processes are clearly inverses of each other and give a bijective correspondence between S and the set of paths from $(0,0)$ to $(n,-7)$. The number of paths from $(0,0)$ to $(n,-7)$ is $C(n,(n+7) / 2)$ and hence we are done.

