
MAT344 FALL 2022

PROBLEM SET 1

Due date: Oct 2, 2022 (on Crowdmark by midnight)

In what follows N, Z, R denote the set of positive integers, the set of integers, and
the set of real numbers respectively. N0 denotes the set of non-negative integers.

1. How many arrangements are there of the 7 letters in ADAMANT?

Solution: There are two ways of doing this problem.

First Way. Pick three spots out of seven to slot the A’s in, and then distribute
D, M , N , T into the remaining four spots, in any way you can. This accounts for(
7
3

)
(4!) =

7!

3!
number of ways.

Second Way. There are 7! ways of permuting 7 objects. However, for any arrange-
ment of the letters, the three A’s can be arbitrarily permuted amongst themselves
to give the same arrangement. We once again get

(
7
3

)
(4!) as the answer. �

2. Let k ≥ n. Give a combinatorial proof of the identity
n∑

r=0

(
n

r

)(
k

r

)
=

(
n+ k

n

)
.

Solution: Split S into two disjoint sets: A = [n] and B = {n + 1, . . . , n + k}.
Picking n elements from S is the same as picking k elements from S, or what
is the same thing, picking a subset C of S with |C| = k. Let r = |C ∩A|.
Then k − r = |C ∩B|. Now r can be any number in {0, 1, . . . , n}. For a fixed

r ∈ {0, 1, . . . , n} there are
(
n
r

)
ways of picking C ∩ A, and

(
k

k−r

)
ways of picking

C ∩B. It follows that there are
∑n

r=0

(
n
r

)(
k
r

)
ways of picking C such that |C| = k.

In other words
(
n+k
k

)
=
∑n

r=0

(
n
r

)(
k
r

)
. Since

(
n+k
k

)
=
(
n+k
n

)
, we are done. �

3. Let n ≥ 9 be an integer. Give a combinatorial proof of the identity(
n

9

)
=

n−5∑
k=4

(
k − 1

3

)(
n− k

5

)
.

Solution: The left side counts the number of subsets A of [n] such that |A| = 9.
Let A be such a set and write the elements of A in ascending order as x1 < · · · < x9.
Then k = x4 must be such that 0 ≤ k ≤ n−5. Conversely, given k ∈ {4, 5, . . . , n−5},
there are

(
k−1
3

)
ways of picking three elements in [k−1], written in ascending order

as x1 < x2 < x3, and
(
n−k
5

)
ways of picking five elements from {k + 1, k + 2, n},
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written in ascending order as x5 < x6 < x7 < x8 < x9. Setting k = x4 the set
A = {x1, . . . , x9} has size 9. Thus

(
n
9

)
=
∑n−5

k=4

(
k−1
3

)(
n−k
5

)
. �

4. In how many ways can you distribute 12 identical objects to 5 people if the first
person can only have 4 or 5 objects and the second person cannot have more
than 3 objects?

Solution: Let us first solve the problem without the constraint on the second per-
son. The constraint on the first person amounts to finding the sum of the number
of non-negative integer solutions of x2 + x3 + x4 + x5 = 8 and the number of non-
negative integer solutions of x2 + x3 + x4 + x5 = 7. From this we have to subtract
the number of solutions which violate the second constraint, i.e. the ones for which
x2 ≥ 4. In other words we have to remove the

(
7
3

)
solutions of x2 +x3 +x4 +x5 = 8

such that x3 + x4 + x5 ≤ 4, as well as the
(
6
3

)
solutions of x2 + x3 + x4 + x5 = 7

such that x3 + x4 + x5 ≤ 3. The answer is
(
11
3

)
+
(
10
3

)
−
(
7
3

)
−
(
6
3

)
. �

Diagonal Lattice Paths. Recall that there is another kind of lattice path, the
so-called diagonal lattice path, that is common in the literatute. These consist of
steps from (i, j) to either (i+ 1, j + 1) or (i+ 1, j − 1). Recall that the number of
diagonal lattice maths from (0, 0) to (m,n) is C(m, (m− n)/2) where our conven-
tion is that for a real number r, C(m, r) = 0 if r does not belong to {0, 1, . . . , m}.

5. Let n ∈ N. Assume that there is a diagonal lattice path from (0, 0) to (n, 3).
Prove combinatorially that the number of diagonal lattice paths from (0, 0) to
(n, 3) which dip below the line y = −1 is C(n, (n+ 7)/2).

Figure 1. The path on the left dips below the line y = −1 but
the path on the right does not.

Solution: For brevity, by a path we will mean a diagonal lattice path (for this
solution). Let S be the set of paths from (0, 0) to (n, 3). A path dips below the
line y = −1 if and only if it hits the line y = −2. Let σ ∈ S, and let k = k be the
first time σ hits the line y = −2. Let σ1 be the portion of σ between (0, 0) and
(k, −2) and σ2 the portion between (k,−2) and (n, 3). Reflect σ2 about the line
y = −2 and get a path τ2. It is clear that τ2 is a path from (k,−2) to (n,−7), since
−2 is exactly midway between 3 and −7. Let τ be the lattice path from (0, 0) to
(n, −17) which is σ1 followed by τ2. Thus σ gives rise to a path τ from (0, 0) to
(n, −17).
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Conversely, if τ is a path from (0, 0) to (n,−17), it must hit the line y = −2. Let
k be the first time it does, and break up τ into τ1 and τ2, with τ1 being the portion
of τ on or before (k, −2), and τ2 the portion from (k,−2) to (n,−7). Reflect τ2
about the line y = −2 to get a path σ2 from (k,−2) to (n, 3). Let σ be the path
which is τ1 followed by σ2. It is clear that σ ∈ S since it must dip below y = −1 if
it has the point (k, −2) on it.

The two processes are clearly inverses of each other and give a bijective corre-
spondence between S and the set of paths from (0, 0) to (n, −7). The number of
paths from (0, 0) to (n,−7) is C(n, (n+ 7)/2) and hence we are done. �
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