MAT344 FALL 2022

PROBLEM SET 1

Due date: Oct 2, 2022 (on Crowdmark by midnight)
In what follows $\mathbf{N}, \mathbf{Z}, \mathbf{R}$ denote the set of positive integers, the set of integers, and the set of real numbers respectively. \mathbf{N}_{0} denotes the set of non-negative integers.

1. How many arrangements are there of the 7 letters in ADAMANT?
2. Let $k \geq n$. Give a combinatorial proof of the identity

$$
\sum_{r=0}^{n}\binom{n}{r}\binom{k}{r}=\binom{n+k}{n}
$$

3. Let $n \geq 9$ be an integer. Give a combinatorial proof of the identity

$$
\binom{n}{9}=\sum_{k=4}^{n-5}\binom{k-1}{3}\binom{n-k}{5}
$$

4. In how many ways can you distribute 12 identical objects to 5 people if the first person can only have 4 or 5 objects and the second person cannot have more than 3 objects?

Diagonal Lattice Paths. Recall that there is another kind of lattice path, the so-called diagonal lattice path, that is common in the literatute. These consist of steps from (i, j) to either $(i+1, j+1)$ or $(i+1, j-1)$. Recall that the number of diagonal lattice maths from $(0,0)$ to (m, n) is $C(m,(m-n) / 2)$ where our convention is that for a real number $r, C(m, r)=0$ if r does not belong to $\{0,1, \ldots, m\}$.
5. Let $n \in \mathbf{N}$. Assume that there is a diagonal lattice path from $(0,0)$ to $(n, 3)$. Prove combinatorially that the number of diagonal lattice paths from $(0,0)$ to $(n, 3)$ which dip below the line $y=-1$ is $C(n,(n+7) / 2)$.

Figure 1. The path on the left dips below the line $y=-1$ but the path on the right does not.

