
MAT344 FALL 2022

MIDTERM PROJECT

Due date: Oct 24, 2022 (on Crowdmark by midnight)

In what follows N, Z, R denote the set of positive integers, the set of integers, and
the set of real numbers respectively. N0 denotes the set of non-negative integers.

1. Let 1 ≤ p ≤ k ≤ n with p, k, n ∈ N. Give a combinatorial proof of the following
identity: (

n

k

)
=

n−k+p∑
i=p

(
i− 1

p− 1

)(
n− i
k − p

)
.

Solution: The left side is the number of ways of choosing k elements from the set
[n].

Suppose we have k elements x1 < x2 < . . . < xk in [n] such that xp = i.
Then {x1, . . . , xp−1} ⊂ [i − 1] and {xp+1, xp+2, . . . , xk} ⊂ {i + 1, i + 2, . . . , n}.
Looking at the sizes of the sets {x1, . . . , xp−1}, [i − 1], {xp+1, xp+2, . . . , xk}, and
{i + 1, i + 2, . . . , n}, we see that this is possible if and only if p − 1 ≤ i − 1 and
k − p ≤ n − i. These two conditions combine to give p ≤ i ≤ n − k + p. In other
words if we have k elements x1 < x2 < . . . < xk in [n], then i is a possible value of
xp if and only if p ≤ i ≤ n− k + p.

Choosing k elements x1 < x2 < . . . < xk from [n] so that that xp = i is the same
as choosing p− 1 elements from [i− 1] and k− p elements from {i+ 1, i+ 1, . . . , n}.
There are clearly

(
i−1
p−1
)(

n−i
k−p
)

ways of doing this. Summing over i in the range

p ≤ i ≤ n − k + p, we get all ways of choosing k elements in [n]. But this sum is
the right side. Hence we are done. �

2. Let n ∈ N. Give a lattice path (diagonal or usual) proof of the identity(
2n

n

)
=

(
2n− 1

n

)
+

n∑
k=1

1

k

(
2k − 2

k − 1

)(
2n− 2k

n− k

)
.

Solution: The left side is |S| where S is the set of diagonal lattice paths from
(0, 0) to (2n, 0). We have two disjoint subsets of S, namely A consisting of those
paths in S which pass through (1, 1) and B consisting of those which pass through
(1, −1). Thus |S| = |A|+ |B|.

Now elements of A can be identified with diagonal lattice paths from (1, 1) to
(2n, 0) and elements of B with diagonal lattice paths from (1, −1) to (2n, 0). From
standard formulas, we see that |B| =

(
2n−1

n

)
.

In view of the above, we have to show that |A| =
∑n

k=1
1
k

(
2k−2
k−1

)(
2n−2k
n−k

)
. Let σ

be a diagonal lattice path from (1, 1) to (2n, 0). Let k be smallest integer such
that (2k, 0) is on σ, i.e., (2k, 0) is the first hit of σ on the x-axis. Then (2k − 1, 1)
is necessarily on σ, and σ does not dip below y = 1 from (1, 1) to (2k− 1, 1). This
is the same as a Catalan path from (0, 0) to (2k − 2, 0) translated to (1, 1), and
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there are Ck−1 such paths, where Ck−1 is the (k − 1)
th

Catalan number. Once σ
hits (2k, 0) it can take any diagonal lattice path from (2k, 0) to reach (2n, 0) and
the number of such paths is the same as the number of diagonal lattice paths from
(0, 0) to (2(n− k), 0) and this number is

(
2n−2k
n−k

)
. Thus |A| =

∑n
k=1 Ck−1

(
2n−2k
n−k

)
.

Since

Ck−1 =
1

k

(
2k − 2

k − 1

)
,

we are done. �

3. Let 0 ≤ m ≤ n. Give a combinatorial proof of the identity

3n−m
(
n

m

)
=

n∑
r=m

2n−r
(
n

r

)(
r

m

)
.

Solution: Here are two solutions to the problem.

I. Consider the number of ways of forming a committee from a pool of n people,
a sub-committee from the committee, and sub-committee of the sub-committee (a
sub-subcommittee for short), with the requirement that the sub-subcommittee has
exactly m members.

There are (at least) two methods of forming the committee. One method is:
We select the m members of the sub-subcommittee first, and then decide the roles
of the remaining n − m people in the pool. There are

(
n
m

)
ways of selecting the

sub-committee. The possible roles for the remaining n−m people are three: sub-
committee member but not a sub-subcommittee member, committee member but
not a subcommittee member, and non-member. There are 3n−m possibilities. Thus
the number of ways of forming the committee so that the stated requirements are
satisfied is 3n−m

(
n
m

)
, which is the left side.

One could also form the committee by picking the sub-committee, and then pick-
ing the sub-subcommittee and then picking the remaining members of the commit-
tee. Before that, we need to pick the size r of the subcommittee. Clearly m ≤ r ≤ n.
Having picked r, there are

(
n
r

)
ways of forming a sub-committee of size r, and hav-

ing picked the sub-committee, there are
(
r
m

)
ways of forming the sub-subcommittee.

The n−r persons not in the sub-committee have two roles: non-members, or mem-
bers of the committee who are not in the subcommittee. There are 2n−r ways
of assigning these roles. Thus the number of ways of forming the committee so
that the sub-committee has size r is 2n−r

(
n
r

)(
r
m

)
. Summing over r in the range

m ≤ r ≤ n we see that the number of ways of forming the committee with all the
requirements in place is

∑n
r=m 2n−r

(
n
r

)(
r
m

)
. This exactly the right side.1

II. Consider the set S of strings of length n from the set X = {0, 1, 2, 3} such that
there are exactly m zeroes in the string. There are

(
n
m

)
ways of picking the spots

where the 0’s occur. The remaining spots in the string can be any element from
{1, 2, 3}. Thus |S| = 3n−m

(
n
m

)
which is the left side.

We can also count the number of elements in S is a different way. Let r be an
integer between m and n. Let Sr be subset of S consisting of strings such that the
total number of 0’s and 1’s in the string is r. It is clear that |S| =

∑n
r=m |Sr|. An

element of Sr is a choice of r places in the string (amongst n) to place the 0’s and

1What if we picked the committee first, then picked a sub-committee from the pool of selected

committee members, and finally picked the sub-subcommittee? What answer will you get?.
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1’s, followed by a choice of m places from these r places to place the 0′s, followed
by an assignment of 2 or 3 in the remaining n − r places. There are

(
n
r

)(
r
m

)
2n−r

ways of doing this, whence |Sr| = 2n−r
(
n
r

)(
r
m

)
. Since |S| =

∑n
r=m |Sr|, it follows

that |S| is also the right side of asserted identity. �

Remark. The two solutions are really the same.

4. Let G = (V, E) be a graph. An eulerian trail in G is a walk such that every
edge is traversed exactly once. It differs from an eulerian circuit in that that the
starting and the ending vertex in our walk need not be the same (an eulerian
circuit is always an eulerian trail, but not every eulerian trail is an eulerian
circuit). Prove that if G is connected and has at most two vertices of odd order,
then it has an eulerian trail.

Solution: Suppose G is connected and has at most two vertices of odd degree.
The number of vertices of odd degree is even (from a result proved in class). So
the only possibilities are that G has no vertices of odd degree or it has two vertices
of odd degree. In the first case G has an eulerian walk and so we are done. In the
second case, suppose u and v are the two vertices with odd degree. Form a new
graph G′ = (V ′, E′) by adding an extra vertex x to G and an adding an edges from
u to x and v to x. Thus V ′ = V ∪{x} and E′ = E∪{ux, vx}. Then G′ is connected
and every one of its vertices has even degree. It follows that G′ has an eulerian
walk starting and ending at x. Remove the edges xu and vx from this walk, and
we have a walk in G from u to v which visits every edge in G. �

5. Let n ∈ N and X = [n] = {1, 2, . . . , n}. We say that a permutation π of X (by
which we mean a permutation of length n of X) has a descent at position k if
π(k) > π(k + 1).
(a) Fix k such that 1 ≤ k ≤ n. How many permutations of X are such that

they have have exactly one descent and that descent is at k?
(b) How many permutations of X have at most one descent?

Solution: A permutation π = π1π2 . . . πn has descent at exactly k if and only if it
simulatenously satisfies

(i) π1 < π2 < · · · < πk,
(ii) πk > πk+1, and
(iii) πk+1 < πk+2 < · · · < πn.

Choose a subset S of [n] of size k arrange the elements of S as π1 < π2 < · · · < πk.
Arrange the remaining elements in [n] as πk+1 < πk+2 < · · · < πn. The only way
that πk < πk+1 is if S = {1, 2, . . . , k}, for then πk+1 = k + 1. For every other
possibility for S, πk > πk+1. Thus the number of permutations with descent at
exactly k is

(
n
k

)
− 1. This answers part (a).

Now for part (b). There is only one permutation with no descents, and that is
π = 123 . . . n. The number of permutations with at most one descent is the sum of
the number of permutations with no descents, the number with exactly one descent
at position 1, exactly one descent at position 2, at position 3, . . . , at position n−1.
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This sum is

1 +

[(
n

1

)
− 1 +

(
n

2

)
− 1 + . . .

(
n

n− 1

)
− 1

]
= 1 +

n−1∑
k=1

(
n

k

)
− (n− 1)

= 2 +

n−1∑
k=1

(
n

k

)
− n

=

n∑
k=0

(
n

k

)
− n

= 2n − n.

This proves part (b). It is not necessary to do the above simplification to get full
credit.

There is an equivalent way of doing part (b). We are really counting all the sub-
sets of [n] except the subsets {1}, {1, 2}, . . . , {1, 2, . . . , n}. The empty set accounts
for the only permutation with no descent. Since there are 2n subsets of [n], we once
again get 2n − n as the answer for (b). �

6. Let k ∈ N and let X be a set with |X| = k + 1.
(a) Show that the number of X-strings of length n with no two consecutive

repeated characters of the form xx in the string is (k + 1)kn−1.
(b) Fix a character y in X and consider the set Pn of X-strings of length n

with no two consecutive y’s in them. Find a recurrence relation and initial
conditions for the function f(n) given by the formula f(n) = |Pn|. (You
will have to give as many initial conditions as are needed to recursively
determine f(n) from earlier terms. For example, a recurrence relation of
the form g(n) = 7g(n− 1) + 4g(n− 2) requires two initial conditions.)

Solution: For part (a), there are k + 1 choices for the first spot in the string.
Having picked a character for the first spot, we cannot use it for the second spot,
and so we have only k choices for the second spot. Having picked a character for
the second spot, we have only k choices for the third spot. Continuing this way
we get that the number of strings with no two consecutive repeated characters is
(k + 1)kn−1.

Now for (b). It is clear that f(1) = k + 1, because no X-string of length 1 can
possibly have two consecutive y’s occurring in it. Next, there is only one X-string
of length 2 which has two consecutive y’s in it, namely the string yy. Since there
are (k + 1)2 X-strings of length 2, it follows that f(2) = (k + 1)2 − 1.

Now suppose n ≥ 3. Let x = x1x2 . . . xn be an X-string of length n. There are
two possibilities,:

• xn 6= y ,and
• xn = y.

In the first case, there are k choices for xn. Moreover, in this case, x has no
consecutive y’s if and only if the string x1x2 . . . xn−1 has no consecutive y’s. There
are f(n − 1) choices of these, and k choices for xn. Thus the number of strings
x = x1x2 . . . xn of length n, with xn 6= y and with no two consecutive y’s is kf(n−1).

If xn = y, then x has no consecutive y’s if and only if xn−1 6= y and the string
x1x2 . . . xn−2 has no consecutive y’s. There are k choices for xn−1 and f(n − 2)
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choices for x1x2 . . . xn−2, and hence the number of choices for x with xn = y and
without consecutive y’s is kf(n− 2). Thus f(n) satisfies the recurrence relation

f(n) = k
(
f(n− 1) + f(n− 2)

)
, n ≥ 3,

with the initial conditions f(1) = k + 1, and f(2) = (k + 1)2 − 1.
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