MAT 344 INTRODUCTION TO COMBINATORICS MIDTERM TEST. FEB 27, 2018. NO AIDS ALLOWED

The maximum grade is 100 . You do not have to solve all problems to receive this grade.
(1) (20 marks) Draw two non-isomorphic graphs with six vertices and 10 edges. Prove the two graphs you have drawn are not isomorphic.
(2) Let K_{n} denote the complete graph with n vertices, and $K_{m, n}$ the complete bipartite graph with m vertices on the left, and n vertices on the right.
(a) (10 marks) Show that $K_{2, n}$ is planar for every $n \geq 1$.
(b) (10 marks) Show that K_{5} is not planar by using the corollary to Euler's formula connecting the number of regions, edges, and vertices.
(3) (20 marks) Suppose a graph G has all vertices of degree $\leq d$. Show that its chromatic number $\chi(G)$ is less than or equal to $d+1$.
(4) (20 marks) Suppose all vertices of a graph have degree 15. Show that the number of edges in G is a multiple of 15.
(5) (20 marks) Let G be a connected planar graph with eight vertices and 12 edges. Show that a planar depiction of G must have at least three regions of degree ≤ 4
(6) Consider the following directed $a-z$ network N with capacities as displayed.

See next page for the rest of question 6 .
(a) (5 marks) Which of the following is not a flow for N ? (The picture for N is reproduced below again for your convenience.)
(i) $f(\vec{a}, b)=5, f(\vec{a}, c)=5, f(\vec{b}, d)=3, f(\vec{b}, e)=2$, $f(\vec{c}, d)=1, f(\vec{c}, e)=4, f(\vec{d}, z)=4, f(\vec{e}, z)=6$.
(ii) $f(\vec{a}, b)=5, f(\vec{a}, c)=3, f(\vec{b}, d)=3, f(\vec{b}, e)=2$, $f(\vec{c}, d)=1, f(\vec{c}, e)=2, f(\vec{d}, z)=4, f(\vec{e}, z)=4$.
(iii) $f(\vec{a}, b)=5, f(\vec{a}, c)=4, f(\vec{b}, d)=3, f(\vec{b}, e)=2$, $f(\vec{c}, d)=1, f(\vec{c}, e)=3, f(\vec{d}, z)=4, f(\vec{e}, z)=5$.
(b) (5 marks) For a directed network, define the cut (P, \bar{P}) associated with a set P of vertices of the network.
(c) (10 marks) Find a maximum flow for the network N displayed on the previous page (and below) and show it is a maximum flow by finding a minimum $a-z$ cut (P, \bar{P}) for that flow. Prove that your cut is indeed the minimum cut for your flow.

So that you do not have to keep flipping this page, here is a picture of N again:

