
MAT 344 INTRODUCTION TO COMBINATORICS

SOLUTIONS OF THE MIDTERM TEST ON FEB 27, 2018

(1) (20 marks) Draw two non-isomorphic graphs with six vertices and
10 edges. Prove the two graphs you have drawn are not isomorphic.

Solution: Consider the following two graphs

Let the graph on the left be denoted G and the one on the right G′.
They both have six vertices and 10 edges. However, G has a vertex,
namely f , which has degree 5, whereas none of the vertices of G′

have degree 5. So G and G′ cannot be isomorphic. (This in NOT
the only solution. There may be many other pairs of non-isomorphic
graphs with six vertices and 10 edges.) �

(2) Let Kn denote the complete graph with n vertices, and Km,n the
complete bipartite graph with m vertices on the left, and n vertices
on the right.
(a) (10 marks) Show that K2,n is planar for every n ≥ 1.
(b) (10 marks) Show that K5 is not planar by using the corollary

to Euler’s formula connecting the number of regions, edges, and
vertices.

Solution:
(a) The following picture shows that K2,n is planar for every n ≥ 1.
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(b) The corollary states that e ≤ 3v−6 for any planar graph G where
e is the number of edges of G and v is the number of vertices of G.
If G is K5 then e = 10 and v = 5. In this case 3v− 6 = 15− 6 = 9,
and hence e > 3v − 6, which means K5 is not planar. �

(3) (20 marks) Suppose a graph G has all vertices of degree ≤ d. Show
that its chromatic number χ(G) is less than or equal to d+ 1.

Comment: Too many of you tried to do induction on d. That is
not the right strategy here. You need to induct on the number of
vertices.

Solution: Suppose G = (V,E) is a graph all of whose vertices are
of degree ≤ d. Let m = maxv∈V deg v. Then m ≤ d. Let v be
the number of vertices in G. If v = 1, then clearly the statement
is true, for in this case χ(G) = 1 and 1 ≤ d + 1, for d ≥ 0. Let
n > 1 and suppose the statement is true for all graphs G′ such that
the number of vertices of G′ is n − 1 and such that all vertices of
G′ have degree ≤ d. Let x be any vertex of G, and G′ be the graph
obtained be removing x from G as well as all the edges incident on
x. Then the number of vertices in G′ in n−1 and every vertex of G′

has degree ≤ d. Therefore by induction hypothesis, we can colour
G′ with ≤ d + 1 colours. Do so. Since deg x ≤ d, x has at most d
adjacent vertices. Therefore at most d colours are used up in G′ to
colour the vertices adjacent to x in G. It is clear that one can assign
a colour to x such that G has at most (d+ 1) colours. �

(4) (20 marks) Suppose all vertices of a graph have degree 15. Show
that the number of edges in G is a multiple of 15.

Solution: Let e be the number of edges of G, and v the number of
vertices. We know that∑

v∈V
deg v = 2e

where V is the set of vertices of G. Since deg v = 15 for every v ∈ V ,
the above equation translates to

15v = 2e.
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This means 15 divides 2e. Now the greatest common divisor of 15
and 2 is 1. By unique factorisation theorem for integers it follows
that 15 must divide e. �

(5) (20 marks) Let G be a connected planar graph with eight vertices
and 12 edges. Show that a planar depiction of G must have at least
three regions of degree ≤ 4.

Solution: As usual, let e and v be the number of edges and vertices
of G and r the number of regions determined by a planar depiction
of G. Then by Euler’s formula we know that r− e + v = 2. In our
case v = 8 and e = 12, which means r = 2 + 12 − 8 = 6. Thus we
have six regions determined by G. Let R1, R2, R3, R4, R5, and R6

be the regions determined by G. We know that

6∑
i=1

degRi = 2e = 24.

Let n be the number of regions with degree ≤ 4. Then we have 6−n
regions of degree greater than or equal to 5. Re-order the regions if
necessary, and suppose R1, ..., Rn have degree ≤ 4, and Rn+1, Rn+2,
..., R6 have degree ≥ 5. Now all regions have degree at least 3. This
means

24 =
6∑

i=1

degRi

=

n∑
i=1

Ri +

6∑
i=n+1

Ri

≥ 3n+ 5(6− n)

since degRi ≥ 3 for 1 ≤ i ≤ n and degRj ≥ 5, n+ 1 ≤ j ≤ 6. This
means 24 ≥ 30− 2n. In other words 2n ≥ 6, i.e., n ≥ 3. �
Comment: This finishes the problem. But you might wonder
whether it is possible to have three regions of degree ≤ 4 (perhaps
the minimum number required is greater). Here is an example of
a planar graph with eight vertices and 12 edges with exactly three
regions of degree ≤ 4.
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(6) Consider the following directed a-z network N with capacities as
displayed.

(a) (5 marks) Which of the following is not a flow for N? (The
picture for N is reproduced below again for your convenience.)

(i) f(~a, b) = 5, f(~a, c) = 5, f(~b, d) = 3, f(~b, e) = 2,

f(~c, d) = 1, f(~c, e) = 4, f(~d, z) = 4, f(~e, z) = 6.

(ii) f(~a, b) = 5, f(~a, c) = 3, f(~b, d) = 3, f(~b, e) = 2,

f(~c, d) = 1, f(~c, e) = 2, f(~d, z) = 4, f(~e, z) = 4.

(iii) f(~a, b) = 5, f(~a, c) = 4, f(~b, d) = 3, f(~b, e) = 2,

f(~c, d) = 1, f(~c, e) = 3, f(~d, z) = 4, f(~e, z) = 5.

Solution: It is easy to see that for (i), (ii), and (iii), if v /∈ {a, z}
then

∑
e∈In(x) f(e) =

∑
e∈Out(x) f(e). However in (i) we have

f(~c, e) = 4 > k(~c, e) = 3, which violates the definition of a flow.
Thus the function f in (i) is not a flow. It is easy to see that
(ii) and (iii) are satisfy the requirement that the flow through
an edge is less than or equal to the capacity through that edge.
Thus the answer is that (i) is not a flow for N (or more precisely,
the f in (i) is not a flow for N), but (ii) and (iii) are flows for
N . �

(b) (5 marks) For a directed network, define the cut (P, P ) associ-
ated with a set P of vertices of the network.

Solution: Let P denote the set of vertices in the directed net-
work which are not in P . The cut (P, P ) associated with P is
the set of all edges (~x, y) in the directed network with x ∈ P
and y ∈ P .
Comment: Too many of you tried to define a cut for the net-
work N shown in the picture. You were asked for a general
definition.

(c) (10 marks) Find a maximum flow for the network N displayed
on the previous page (and below) and show it is a maximum
flow by finding a minimum a-z cut (P, P ) for that flow. Prove
that your cut is indeed the minimum cut for your flow.

Solution to (c) on next page.
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Solution: Here is N .

Consider the set P = {a, c}. Then (P, P ) = {(~a, b), (~c, d), (~c, e)}.
Note that (P , P ) is empty. The capacity of the cut (P, P ) is

k(P, P ) = k(~a, b) + k(~c, d) + k(~c, e) = 5 + 1 + 3 = 9.

If we can find a flow f for N such that |f | = k(P, P ) then we know
that f is a maximum flow and (P, P ) a minimum a-z cut for that
flow (see Corollary 2(a) on page 138 of the text, especially the last
line). Now consider the flow in (iii) above. We have

|f | =
∑

e∈Out(a)

f(e)

= f(~a, b) + f(~a, c)

= 5 + 4

= 9

= k(P, P ).

Thus the flow in (iii) is a maximum flow, and (P, P ) is a minimum
a-z cut for (iii).
Comment: One way of figuring out the problem is this. The sum
of the capacities of the edges going out from a is 10, but no flow f
can possibly have |f | = 10, because such a flow would have to have
f(~a, c) = 5 and this is greater than the sum of the capacities of edges
going out of c. On the other hand if we look at the flow in (iii), it
has the next best number as its value, namely 9, and so it has to be
a maximum flow. Finding a minimum cut for (iii) is easy after that.


