1. Let $\{m_{\mathbf{k}}\}$ be a strictty increasing sequence of positive integers. Let $E = \{z \in [0,2\pi) \mid \{\sin(n_{\mathbf{k}}z)\}_{\mathbf{k}=1}^{\infty} \text{ converges}\}$. Show that m(E) = 0, where m is the belogne measure on $[0,2\pi)$. [With: You may we the fast that $\lim_{n\to\infty} \int_{A} \sin nx \, dn = \lim_{n\to\infty} \int_{A} \cos nx \, dx = 0$ for every non-empty m^{2} ble set A in $[0,2\pi)$.]

2. Let (X, S, u) and (Y, T, v) be o-finite measure spaces.

For $Q \subseteq X \times Y$, $x \in X$, and $y \in Y$ define $Q_x = \{y \in Y \mid (x,y) \in Q\}.$ $Q^{3} = \{x \in X \mid (x,y) \in Q\}.$

Remak:

Qx is "essentially" the
intersection of Q with
the fibre one 2 of
XXY -> X and a
similar description works
for Q*

Assume:

- (i) EE 1x7 => Exe7 txGX and Eted tyGY.
- (ii) For $E \in J \times T$ if $\varphi_E : X \to CO, \infty$ and $Y_E : Y \to CO, \infty$ are the maps $x \mapsto v(E_x)$ and $y \mapsto \mu(E^y)$ respectively. Item φ_E and Ψ_E are meanable.

With the above assumptions, for $E \in d \times C$, define $\sigma(E) = \int_X \rho_E d\mu$ and $\overline{\sigma}(E) = \int_Y \Psi_E d\nu$.

[Hond: You may need MCT.]

- (a) T is a measure on (XxY, xx7). (By symmetry so is T.)
- (b) $\sigma = \overline{\sigma}$ on $d_{x} \overline{c}$. [Wint: Test the assertion on meanwable rectangles. You may use results from HW problems provided you quite the results accurately.]