QUIZ 4 OCTOBER 10, 2018

Recall from HW-7 that if X is a Banach space, then there is a canonical isometric embedding $J: X \hookrightarrow X^{**}$ where $(Jx)(\lambda) = \lambda(x)$. X is said to be *reflexive* if J is an onto map.

- (1) Let X be the normed linear space of continuous functions on [0,1] with the norm $||f|| = \int_0^1 |f(t)| dt$. Show that the linear functional $\Lambda f = f(\frac{1}{2})$ is not bounded.
- (2) In this problem we will make the identification $(\ell^1)^* = \ell^\infty$ and identify continuous functionals on C(X), X a compact Hausdorff space, with regular complex Borel measures on X. Let $\widehat{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$ be the one point compactification of the discrete topological space \mathbb{N} . Consider δ_∞ , the Dirac measure at ∞ . Show that this is a functional of norm 1 on c, the closed subspace of ℓ^∞ consisting of convergent sequences. By Hahn Banach this extends to a functional on Λ on ℓ^∞ with $\|\Lambda\| = 1$. Show that Λ does not lie in $J(\ell^1)$, where J is as defined at the beginning of this quiz. Conclude that ℓ^1 is not reflexive.