Sep 12,2018
Quiz 3
Throughout (X, M) is a measurable space. All measures are on m.

Definitions: Let μ and ν be measures.
(a) ν is said to be absolutely continuous with respect to μ, if for every $E \in M$ sit. $\mu(E)=0$, we have $\nu(E)=0$.
(b) μ is said to be concentrated in a set C in M if $\mu(E)=\mu(E \cap C)$ for every $E \in M$. (Equivalently $\mu(E)=0$ for every E disjoint from C).
(c) μ and ν are mutually singular, written $\mu \perp \nu$, if there exist disjoint sets A and B in M with μ concentrated on A and ν concentrated on B.

Examples: If $f \geqslant 0$ is meanuable then $\nu(E):=\int_{E} f d \mu$ defines a measure ν such that $v \ll \mu$. On the otter hand, if $x \in \mathbb{R}$, then the Dirac measure on \mathbb{R}, δ_{x}, and the Lebesgue measme m on \mathbb{R} are mutually singular.

Problems and solutions stent on the nest page

Problems:

1. Let v, μ, λ be measures. Show that (a) $\nu \perp \lambda$ and $\mu \perp \lambda \Rightarrow \nu+\mu \perp \lambda$.
(b) $\nu \perp \lambda$ and $\mu \ll \lambda \Rightarrow \nu \perp \mu$.
(c) $\nu \perp \mu$ and $\nu \ll \mu \Rightarrow \nu=0$.

Solution
(a) Suppose A_{ν} (reap. A_{μ}) and B_{ν} (resp. B ${ }_{\mu}$) are disjoint measurable sets such that ν (resp- μ) is concentrated $\operatorname{in} A_{\nu}$ (resp. A_{μ}) and λ is concentrated in B_{ν} as well as in B_{μ}. Let $A=A_{\mu} \cup A_{\nu}$ and $B=B_{\nu} \cap B_{\mu}$. Cleanly $A \cap B=\phi, \mu+\nu$ is concentrated in A and λ in B. Indent if $C \cap A=\phi$, then $C \cap A_{\mu}=C \cap A_{\nu}=\phi$, and hence $\mu(C)=v(C)=0$, fer $C \in M$. Hence $\mu+\nu$ is concentrated in A.

If $E \in M$, then $E \cap B=\left(E \cap B_{\mu}\right) \cap B_{\nu}$, whence $\lambda(E \cap B)=\lambda\left(E \cap B_{\mu}\right)=\lambda(E)$. Thus d is concentrated in B. Since A and B are disjoint, $\mu+\nu \perp d$.
(b) Let A and B be disjoint measmable sets such that ν is concentrated in A and λ in B, and $A \cap B=\phi$. Since $\mu \ll d$, by definitions μ is concentrated in B, for $\mu(c)=0$ for every $C \in M$ disjoint from B (indeed $\lambda(c)=0$). Thus $\mu \nu v$.
(c) Suppose A, B are disjoint noble sets evils v concentrated in A and μ in B. Sinh (A, B) exist shire $\nu \perp \mu$. Shier $\mu(A)=0$ and $\nu<C \mu$, it follows that $\nu(A)=0$. Thun $\nu(C)=\nu(C \cap A)=0$ $\forall C \in M$, slowing $v=0$.
2. Show that if a measurable function f is such that $\int_{E} f d \mu=0$ for every $E \in M$, then $f=0$ abe. $[\mu]$.
Solution:
Since $S_{E} f d \mu$ exists $\forall E \in M, f \in L^{\prime}(\mu)$. Breaking up f intr its real and elinagivary pants, we may assume f is real valued. For $n \in \mathbb{N}$, let $E_{n}=\left\{f>\frac{1}{n}\right\}$. Then

$$
0=\int_{E_{n}} f d \mu \geqslant \int_{E_{n}} \frac{1}{n} d \mu=\frac{1}{n} \mu\left(E_{n}\right) \geqslant 0 .
$$

Thus $\mu\left(E_{n}\right)=0 \quad \forall n$. Since $\{f>0\}=\bigcup_{n=1}^{\infty} E_{n}$, it follows that $\mu(\{f>0\})=0$. Similarly $\mu(\{f<0\})=0$. Thus $\mu(\{f \neq 0\})=0$. The assention follows.
3. Suppose μ and ν are $\bigvee_{\text {inkle }}$ $\forall \in \in M)$. Suppose g is a meal meanuable function such that $\int_{E}^{g^{+}} d \mu$ and $\int g^{-} d \mu$ are never simaltameonly ∞ fer any $E \in M$, and such that for every $E \in M$, we have (*) $\nu(E)=\int_{E} g d \mu$
(a) Show that $0 \leqslant g \leqslant 1$ a.e. $[\mu]$, and hence ace. [v].
(b) From (a), WLOG we may assume that $0 \leqslant g(x) \leq 1$ for all $x \in X$.

Let $A=\{x \in x \mid g(x)>0\}$. Show that

$$
\mu(E \cap A)=\int_{E} \frac{1}{g} d \nu \quad \forall E \in M .
$$

Solution
(a) $\nu(\{g=\infty\})=\int_{\{g=\infty\}} g d \mu=\infty-\mu\{g=\infty\}$. Since the left side is finite, thin means $\mu\{g=\infty\}=0$.

Next, for $n \in \mathbb{N}$, let $E_{n}=\left\{g \geq 1+\frac{1}{n}\right\}$, and
$E=\{g>1\}$. Then $E_{n} \subset E_{n+1} \forall n \in \mathbb{N}$, and $\cup E_{n}=E$.
Thus $\mu(E)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)$.
Now

$$
\begin{aligned}
\nu\left(E_{n}\right)=\int_{E_{n}} g d \mu & \geqslant\left(1+\frac{1}{n}\right) \int_{E_{n}} d \mu \\
& =\left(1+\frac{1}{n}\right) \mu\left(E_{n}\right) \\
& \geqslant\left(1+\frac{1}{n}\right) \nu\left(E_{n}\right)(\operatorname{tar} \nu \leq \mu)
\end{aligned}
$$

It follows that all menalus in the chain of in equablits above are $z e n$, since $\nu\left(E_{n}\right)<\infty$. This $\mu\left(E_{n}\right)=0$, whence $\mu(E)=0$.

Similarly,

$$
\begin{aligned}
0 \leqslant \nu\left(\left\{g<-\frac{1}{n}\right\}\right) & =\int_{\left\{g<-\frac{1}{n}\right\}} g d \mu \\
& \leqslant-\frac{1}{n} \mu\left(\left\{g<-\frac{1}{n}\right\}\right) \\
& \leqslant 0
\end{aligned}
$$

Thus all tenures in the above chain of equalities and in equalities ane zoo. In particular $\mu\left(\left\{g<-\frac{1}{n}\right\}\right)=0$ It follows that $\mu(\{g<0\})=0$. Thus $0 \leq g \leq 1$ ace. $[\mu]$.
(b) We have

$$
\nu\left(A^{c}\right)=\int_{A^{C}} g d \mu=\int_{\{g=0\}} g d \mu=0 .
$$

Let $E \in M$. Since $g>0$ on $E \cap A$, we have, from a HW exercise (see problem $9(b)$ of HW 5)

$$
\begin{aligned}
\mu(E \cap A) & =\int_{E \cap A} \frac{1}{g} d \nu \quad \text { (from HL exenchic) } \\
& =\int_{E \cap A} \frac{1}{g} d \nu+\int_{E \cap A C} \frac{1}{g} d \nu \quad\left(\sin c e \nu\left(A^{C}\right)=0\right) \\
& =\int_{E} \frac{1}{g} d \nu .
\end{aligned}
$$

Remark : The above can also be proven as follows. Consider $\phi=1-g$. Then $0 \leqslant \phi \leqslant 1$. Also $1-\phi^{n+1}=(1-\phi)\left(1+\phi+\phi^{2}+\cdots+\phi^{n}\right)$. On $A^{c}, \phi \equiv 1$, whence $1-\phi^{n+1} \equiv 0$ on A^{C}. On $A, 0 \leq \phi<1$, and hence $1-\phi^{n+1}$ inverues to X_{A} as $n \rightarrow \infty$. On the otter hond $(1-\phi)\left(1+\phi+\ldots+\phi^{n}\right)=g\left(1+\phi+\ldots+\phi^{n}\right)$. Thus

$$
\int_{E}\left(1-\phi^{n+1}\right) d \mu=\int_{E} g\left(1+\phi+\ldots+\phi^{4}\right) d \mu=\int_{E}\left(1+\phi+\ldots+\phi^{n}\right) d v .
$$

The last equality follows from the Theorem on page 3 o Lecture $4 b$ (lie., from page 3 A the second pant of Lecture 4).
None $1+\phi+\phi^{2}+\ldots+\phi^{n}$ increaus to $\frac{1}{1-\phi}=\frac{1}{g}$, with the understanding that in this care both sides ares on $A C$. Thun $\delta_{E}\left(1-\phi^{n+1}\right) d \mu \xrightarrow{M C T} \int_{E} X_{A} d_{\mu}=\mu(A \cap E)$ as $n \rightarrow \infty$ Qu the otter band

$$
\delta_{E}\left(1+\phi+\ldots+\phi^{n}\right) d \nu \xrightarrow{M C T} \int_{E} \frac{1}{g} d \nu \text { as } n \longrightarrow \infty \text {. }
$$

Thus $\mu(A \cap E)=\int_{E} \frac{1}{g} d \nu$.

However the simplest way of seeing thin is the following:-

Proportion: Suppose $h: x \longrightarrow[0, \infty]$ is measurable. Let $B=\{x \in x \mid 0<h(x)<\infty\}$. Then

$$
\frac{1}{h} \cdot h=x_{B} .
$$

The prof is left as an exercise for you. It is a simple exercise of the conventions govering products involving ∞ and 0 . Note that the prof 1 the Theorem on p. 3 of Lecture $4 b$ reoputs these conventions. Now consider our g . We have $0 \leqslant g \leqslant 1$. Hence $\{g=\infty\}=\phi$, lie., $\{g>0\}=\{0<g<\infty\}$, i.e., $A=\{0<g<\infty\}$. From the Propitious above, we get $\frac{1}{g} \cdot g=X_{A}$. From here, proving the result is easy. Indued,

