Sep 12, 2018

Quiz3

Thronghont (X, M) is a messinable space. All measures are on M.

Definitions: Let p and v be meannes.
(a) v is said to be absolutely continuous with respect to p, if for every EEM s.t. p(E)=0, we have v(E)=0.
(b) p is said to be concentrated in a set C in M if p(E)= p(EAC) for every EEM. (Equivalently p(E)=0 for every E disjoint from C).
(c) p and v are mutually singular, within p1v, if there exist disjoint sets A and B in M with p concentrated on B.

Examples : If f=0 is meannable then r(E) := SE fder defines a measure v such that v << p. On the other hand, if x E R, then the Dirac measure on R, Sx, and the hebrogue measure m on R are mutually singular

hoblems:

Let V, µ, d be meaning. Show that
 (a) v ⊥ d and µ⊥ d ⇒ v +µ⊥ d.
 (b) v⊥ d and µ<< d ⇒ v↓µ.
 (c) v⊥µ and v << µ ⇒ v=0.

Emark: Recall that modulo some fonts about Hilbert spaces and
$$L^2(n)$$
,
we showed in HWS that if μ is first, and $\nu \leq \mu$, then
 $\exists g \in L^1(\mu) \quad \text{s.t. (4)}$ holds for every $E \in \mathcal{M}_1$. By problem 2 above,
this g is unique a.e. (μ) . From there two fonts it is not
hard to see that g satisfying (4) $\forall E \in \mathcal{M}$ exists even when
 μ is σ -firste and $\nu \leq \mu$. To see this, beak up χ with
disjoint pieces on each f which μ is first and we g from
each piece.