Sep 12,2018
Throughout (X, M) is a measurable space. All measures are on m.

Definitions: Let μ and ν be measures.
(a) ν is said to be absolutely continuous with respect to μ, if for even $E \in M$ sit. $\mu(E)=0$, we have $\nu(E)=0$.
(b) μ is said to be concentrated in a set C in M if $\mu(E)=\mu(E \cap C)$ for every $E \in M$. (Equivalently $\mu(E)=0$ for every E disjoint from C).
(c) μ and ν are mutually singular, written $\mu \perp \nu$, if there exist disjoint sets A and B in M with μ concentrated on A and ν concentrated on B.

Examples: If $f \geqslant 0$ is meanuable then $\nu(E):=\int_{E} f d \mu$ defines a measure ν such that $v \ll \mu$. On the otter hand, if $x \in \mathbb{R}$, then the Dirac measure on \mathbb{R}, δ_{x}, and the Lebesgue measme m on \mathbb{R} are mutually singular.

Pollens:

1. Let v, μ, d be measmes. Show that
(a) $\nu \perp \lambda$ and $\mu \perp \lambda \Rightarrow \nu+\mu \perp \lambda$.
(b) $\nu \perp \lambda$ and $\mu \ll \lambda \Rightarrow \nu \perp \mu$.
(c) $\nu \perp_{\mu}$ and $\nu \ll \mu \Rightarrow \nu=0$.
2. Show that if a measurable function f is such that $\int_{E} f d \mu=0$ for every $E \in M$, then $f=0$ abe. $[\mu]$.
3. Suppose μ and ν are $\sqrt{m}_{\text {meanies }}$ with $\nu \leqslant \mu$ (ie., $\nu(E) \leq \mu(E)$ $\forall \in \in M)$. Suppose g is a real measurable function such that $\int_{E} \theta^{+} d \mu$ and $\int g^{-} d \mu$ are rover similtameonly ∞ fer any $E \in M$, and such that for every $E \in M$, we have

$$
\text { (*) } \quad \nu(E)=\int_{E} g d \mu
$$

(a) Show that $0 \leqslant g \leqslant 1$ a.e. $[\mu]$, and hence are. [v].
(b) From (a), WLOG we may assume that $0 \leq g(x) \leq 1$ for all $x \in X$.

Let $A=\{x \in x \mid g(x)>0\}$. Show that

$$
\mu(E \cap A)=\int_{E} \frac{1}{g} d \nu \quad \forall E \in M .
$$

Remark : Recall that modulo some fonts about Hilbert spores and $L^{2}(\mu)$, we showed in HWS that if μ is finite, and $\nu \leq \mu$, then $\exists g \in L^{\prime}(\mu)$ s.t. (*) holds for every $\in \in M$. By problem 2 above, this g is unique ace. $[\mu]$. From there two fonts it is not hard to see that g satisfying $(x) \forall \in \in M$ exists even when μ is σ-finite and $\nu \leqslant \mu$. To see thins, break up x int disjoint piers on each of which μ is founte and use g from each piece.

