Theorial on October 3, 2018 (Halay Mandel)
These notes contains a proof of the Holm-Banach Hussen.
Peal functionals rs. Complex functionals
Suppose V is a vector space over C. Then it is also
a vector space over R. Let us understand the velationship
between the two structures on V.
Lemma : Let X and Y be vector spaces over C and

$$T: X \longrightarrow Y$$

a real livean transformation, i.e. T is livean transformation
from the real vector space X to the real vector space Y. Then
T is a complex livean transformation if and only if
(M) — T(ix) = iTx $H \times CK$.
Peof:
The only non-trivial matter that needs checking is:
 $(M) \Rightarrow T(ax) = aTx H & deC, xeX.$
So suppose (R) holds. Let $d = a+ib$, $a, b\in R$. Then
 $T(ax) = T(ax) + T(ibx)$
 $= aTx + ibTx (arise (x) holds)$

Suppose X is a complex vator space and

$$f: X \longrightarrow C$$

a linear functional. If $u = \text{Ref}$ and $v = \text{Inf}$ then
 $u: X \longrightarrow \mathbb{R}$ and $v: X \longrightarrow \mathbb{R}$ are real functionals, i.e.,
they are real linear and \mathbb{R} valued. This is obvious
from the definitions. Actually one can recover f from
 u (or from v). Here is the statement.

Proposition: but X be a vector space over C.
(a) If $f: X \longrightarrow C$ is a linear functional and $u = \text{Ref}$,
then
(f) $f(v) = u(v) - iu(ix)$ $x \in X$.
(b) If $u: X \longrightarrow \mathbb{R}$ is a read linear functional
and $f: X \longrightarrow C$ is defined as in (1), then
 f is complex linear and $\text{Ref} = u$.
(c) Let X be a normed linear space, $f: X \longrightarrow C$ a bounded linear
functional and $u: X \longrightarrow \mathbb{R}$ as in (a). Then
 $\text{HH} = \text{Hull}$

Prof.
(a) Let $v = \text{Inf}$. Then for $x \in X$
 $-v(x) + iu(x) = i(u(x) + iv(x))$
 $= if(x)$ (since fis C-linear)

= u(ix) + iv(ix),

It follows that
$$v(x) = -u(ix)$$
. Since $f(x) = u(x) + iv(x)$,
we get $f(x) = u(x) - iu(ix)$.
(b) If $u: X \longrightarrow \mathbb{R}$ is \mathbb{R} -linear and $f: X \longrightarrow \mathbb{C}$ is
defined as in (x), then clearly f is \mathbb{R} -linear.
By the lamma, it is enough to show $f(ix) = if(x)$ for
 $x \in X$. From (x), $xf x \in X$, we have
 $f(ix) = u(ix) - iu(-x)$
 $= u(ix) + iu(x)$
 $= i(u(x) - iu(ix))$
 $= if(x)$.
This proves (s)
(c) Since $|u(ix)| \leq |f(x)| \forall x \in X$ hence $\|u\| \leq \|f\|$.
Conversely, let $x \in X$ and pick $x \in \mathbb{C}$ such that $|x| = |u|| ||x||$.
Thus $|f(x)| = af(x) = f(ax) = u(ax) \leq ||u|| \cdot ||ax|| = ||u|| ||x||.$
Thus $||f|| \leq ||u||$.
This proves (c) $q = d$.

m

exterior to C took a while one of the particle reasons why.
Barnach confined his book on functional analysis to nomed
dimen spaces are R.
Pool:
We will first assume
$$K=R$$
. WO a assume $HH=1$.
If $M=X$ there is nothing to prove. If not, pick $x_0 \in XH$
and dit H_1 be the linear span of M and $\{x_0\}$. Note
that any $2 \in M_1$ can be worthen uniquely as
 $E=x+\lambda z_0$ ($x \in M_1, \lambda \in \mathbb{R}$)
For $z \in \mathbb{R}$ defore
 $f_a(x+\lambda z_0) = f(x) + \lambda z$ ($x \in M, \lambda \in \mathbb{R}$)
It is dean that f_a is linear and $f_a|_{M}=f_1$. We would
like to pick a such that $Hf_a||=||f(0, fe_1, ||f_0||=||. For this
is enough to prove that
 $(z^{(2)}) = -\int f(x) + \lambda z = 0$ and $4 \times 2 \in M$.
So assume $\lambda \neq 0$. Then (A) is is equivalent to
 $[f(Z_A) + d] \leq ||Z_A + Z_0|| + X = M_1, \lambda \in \mathbb{R} - \{o\}$.
Two is clearly equivalent to requiring that a satisfies.
 $H(x) + a| \in ||Z_A + Z_0|| + X = M_1.$$

Now
$$(x,x)$$
 is equivalent to
 $- \|z - x_0\| \leq -f(z) + d \leq \|z - Z_0\| \quad \forall z \in M.$
3. other words, for a to entirely (a) is the same as requiring that a satisfy
 $(t) = - f(z) - \|z - x_0\| \leq d \leq f(z) + \|z - x_0\| \quad \forall z \in M$
The difficulty is in harring a satisfy the inequalities simultaneously
for energ Z \in M.
Let $A_Z = f(z) - \|z - x_0\|$ and $B_Z = f(z) + \|z - x_0\|$, $z \in M$
For $y, Z \in M$ we have
 $f(y) - f(z) = f(y - z) \leq \|y - z\| \leq \|y - x_0\| + \|z - x_0\|$.
Re-averaging the above we get
 $A_Y \leq B_Z$ $\forall y, Z \in M.$
Hence $Sup A_Y \leq Truf B_Z$.
Now spick a (ab least one such a $\in R$ exists) S.t.

in d them at so clean that of N= UNA, and g: N
$$\rightarrow$$
 R
the unique map st. $g|_{N_{at}} = g_{a}$, then (N, g) is least upon
bound for $\{b|_{a}, g_{a}\}$, dence by 20 rais lemma d has a nonimal
element (N, J). \Re $\Re \neq \chi$, pick $z_{0} \in X - \Re$ and est
 \Re equal to the linear open of \Re and z_{0} . Then by
provious argument $\exists a$ linear functional $\bar{\Phi}$: $\bar{H}_{1} \rightarrow \mathbb{R}$ such that
 $\bar{\Phi}|_{\bar{H}} = f$ and $\|\bar{\Phi}\| = 1$. This contradicts the maximality \Re
(\bar{H}, \bar{f}). Hence $\bar{H} = X$. Set $F = \bar{f}$. This proves the Halm-Boundh
Theorem for $k = \mathbb{R}$.
 $\Im k = \mathbb{C}$, then let $u = le_{1}$. From the Proportion,
 $\|u\| = \|\|f\|$. By Halm-Boundle for $k = \mathbb{R}$, u has a \mathbb{R} -linear
 $estension $\bar{u}: X \rightarrow \mathbb{R}$ set. $\|\bar{u}\| = \|u\|$. Norse defines
 $F: X \longrightarrow \mathbb{C}$
by
 $F(x) = \bar{u}(x) - i\bar{u}(x) = x \in X$.$

extension of f and

 $\|F\| = \|\|\|\| = \|\|\| = \|\|f\|$. q.e.d.