Tutorial on Oetsben 3,2018 (Malay Mondal)

There notes contain a pros of the Hahm-Banoul theorem.

Real funtionals rs. Complex funtionals
Suppose V is a vector spare oven \mathbb{C}. Then int is also a vector space over \mathbb{R}. Let us undustand the velationslinp between the two siructirns on V.

Lemma: Let X and Y be valor spares over \subset and

$$
T: x \longrightarrow y
$$

a real linear transformation, i.e. T is linear transformation from the real vector space X to the real vector spence Y. Then T is a complex linear transfanation of and only if
(*) \qquad

$$
T(i x)=i T x \quad \forall x \in X .
$$

Prof:
The only nontrivial matter that reeds chubing is:

$$
(*) \Rightarrow T(\alpha x)=\alpha T x \quad \forall \alpha \in \mathbb{C}, x \in X .
$$

So suppose (i) holds. Let $\alpha=a+i b, a, b \in \mathbb{R}$. Then

$$
\begin{aligned}
T(\alpha x) & =T(a x)+T(i b x) \\
& =a T x+b T(i x) \quad \text { (since } T \text { is } \mathbb{R} \text {-linen) } \\
& =a T x+i b T x \quad \text { (since }(x) \text { holds) } \\
& =\alpha T x . \quad \text { a.e.d. }
\end{aligned}
$$

Suppress X is a complex vector spare and

$$
f: x \longrightarrow \mathbb{C}
$$

a linear functional. If $u=\operatorname{Ref}$ and $v=$ Imf then $u: x \rightarrow \mathbb{R}$ and $v: x \rightarrow \mathbb{R}$ are real functronals, i.e., they are real liven and \mathbb{R} valued. This is obvious from the definitions. Actually one can recover f form u (or from r). Here is the statement.

Proposition: Let x be a venter spare oven \mathbb{C}.
(a) If $f: x \rightarrow \mathbb{C}$ is a limier functional and $u=\operatorname{Re} f$, then
$(t)-\quad f(x)=u(x)-i u(i x) \quad x \in X$.
(b) If $u: x \rightarrow \mathbb{R}$ is a real linear functional and $f: X \rightarrow \mathbb{C}$ is defined as in (t), then f is complex linear and Ref $=u$.
(c) Let X be a normed linear space, $f: x \rightarrow \mathbb{C}$ a bounded linear functional and $u: x \rightarrow \mathbb{R}$ as in (a). Then

$$
\|f\|=\|u\|
$$

Prof
(a) Let $v=\operatorname{Im} f$. Then for $x \in x$

$$
\begin{aligned}
-v(x)+i u(x) & =i(u(x)+i v(x)) \\
& =i f(x) \\
& =f(i x) \quad \text { (surice } f \text { is } \mathbb{C} \text {-linear) } \\
& =u(i x)+i v(i x) .
\end{aligned}
$$

It follows that $v(x)=-u(i x)$. Since $f(x)=u(x)+i v(x)$, we get $f(x)=u(x)-i u(i x)$.
(b) If $\mu: x \rightarrow \mathbb{R}$ is \mathbb{R}-linear and $f: x \rightarrow \mathbb{C}$ is defined as in (x), then clearly f is \mathbb{R}-linear. By the Lemma, it is enough to show $f(i x)=i f(x)$ fer $x \in X$. From $(*)$, if $x \in X$, we have

$$
\begin{aligned}
f(i x) & =u(i x)-i u(-x) \\
& =u(i x)+i u(x) \\
& =i(u(x)-i u(i x)) \\
& =i f(x) .
\end{aligned}
$$

This pious (b)
(c) Since $|u(x)| \leqslant|f(x)| \quad \forall x \in X$ hence $\|u\| \leqslant\|f\|$.

Connensdy, let $x \in X$ and pice $\alpha \in \mathbb{C}$ such that $k l=1$ and $\alpha f(x)=|f(x)|$.
Thus $|f(x)|=\alpha f(x)=f(\alpha x)=u(\alpha x) \leq\|u\| \cdot\|\alpha x\|=\|u\| \cdot\|x\|$.
Thus $\left\|_{f}\right\| \leq \| u l l$.
This pious (c). q.e.d.
The thahn-Banach Theorem
Theorem: Lit \mathbb{K} be \mathbb{R} or \mathbb{C}. Let X be a normed linear space over K, M a subspace of X and $f: M \longrightarrow \mathbb{K}$ a bounder linear functional. Then f can be extended to a bounded linear functional $F: X \rightarrow \mathbb{K}$ such that $\|F\|=\|f\|$.
(Note: By "extension" we of come mean that $\left.F\right|_{M}=f$.) Historical note: This is really a real rector space result. The
extension to \mathbb{C} took a while, one of the possible reasons why Banach confined his book on functional analysis to nomen limen spaces over \mathbb{R}.
Prof:
We will first assume $\mathbb{k}=\mathbb{R}$. WLOG assume $\|f\|=1$.
If $M=X$ there is nothing to prove. If not, pick $x_{0} \in X M M$ and let M_{1} be the limen span of M and $\left\{x_{0}\right\}$. Note that any $z \in M_{1}$ can be written uniquely as

$$
z=x+\lambda x_{0} \quad(x \in M, \lambda \in \mathbb{R})
$$

For $\alpha \in \mathbb{R}$ depone

$$
f_{\alpha}: M_{1} \longrightarrow \mathbb{R}
$$

by the formula

$$
f_{\alpha}\left(x+\lambda x_{0}\right)=f(x)+\lambda \alpha \quad(x \in M, \lambda \in \mathbb{R})
$$

It is clean that f_{α} is linear and $f_{\alpha} l_{M}=f$. We would like to pick α such that $\left\|f_{\alpha}\right\|=\|f\|$, ie., $\left\|f_{\alpha}\right\|=1$. For this it is enoongh to prove that
(*) $\quad|f(x)+\lambda \alpha| \leqslant\left\|x+\lambda x_{0}\right\| \quad \forall x \in M, \lambda \in \mathbb{R}$
The above is trivially tuns for $d=0$ and $\forall x \in M$.
So assume $d \neq 0$. Then (x) is is equivalent to

$$
\left|f\left(\frac{x}{d}\right)+\alpha\right| \leqslant\left\|\frac{x}{\lambda}+x_{0}\right\| \quad \forall x \in M, d \in \mathbb{R}-\{0\} .
$$

This is clearly equivalent to requiring that α satrofies.

$$
|f(x)+\alpha| \leqslant\left\|x+x_{0}\right\| \quad \forall x \in M .
$$

Lit $z=-x$. Then the reguirenant is that α satisfies $(* x) \quad \mid-f(z)+\alpha\|\leqslant\| z-x_{0} \| \quad \forall z \in M$.

Nor o (**) is equivalent ts

$$
-\left\|z-x_{0}\right\| \leqslant-f(z)+\alpha \leqslant\left\|z-x_{0}\right\| \quad \forall z \in M \text {. }
$$

In other words, for α to satis fy (A) is the same as requiring that α satisfy

$$
(t) \longrightarrow f(z)-\left\|z-x_{0}\right\| \leqslant 2 \leqslant f(z)+\left\|z-x_{0}\right\| \quad \forall z \in M
$$

The difficulty is in having a satisfy the inequalities simultaneondy for ency $Z \in M$.

Let $A_{z}=f(z)-\left\|z-x_{0}\right\|$ and $B_{z}=f(z)+\left\|z-x_{0}\right\|, z \in M$
For $y, z \in M$ we have

$$
f(y)-f(z)=f(y-z) \leqslant\|y-z\| \leqslant\left\|y-x_{0}\right\|+\left\|z-x_{0}\right\| .
$$

R_{e}-arranging the above we get

$$
A_{y} \leqslant B_{z} \quad \forall y, z \in M .
$$

Hence $\operatorname{Sup}_{y \in M} A_{y} \leqslant \operatorname{Inf}_{z \in M} B_{z}$.

Now pick α (at least one such $\alpha \in \mathbb{R}$ exits) sit.

$$
\sup _{y \in M} A_{y} \leq \alpha \leq \operatorname{Inf}_{z \in M} B_{z}
$$

For this $\alpha, A_{z} \leq B_{z} \forall z \in M$, lie, (t) is satisfied.
This means θ (t) is tune for this choice $\mathcal{A} \alpha$, and hence $H_{\alpha} \|=1$.

Now let os the the collection of pains (N, g), Na subspace of X containing M, and $g: N \longrightarrow \mathbb{R}$ a lincon functional with $\|g\|=1$ and s.t. $g l_{M}=f$. Define a partial order on A by

$$
\left(N_{1}, g_{1}\right) \prec\left(N_{2}, g_{2}\right) \quad \text { if } N_{1} \subset N_{2} \text { and } g_{1}=g_{2} l_{N_{1}} \text {. }
$$

If A is a totally ardund sd and $\left\{\left(N_{\alpha}, g_{\alpha}\right) \mid \alpha \in A\right\}$ is a chair
in \& then it is clem that of $N=U N$, and $g: N \rightarrow \mathbb{R}$ the uniguremap st. $\left.g\right|_{N_{\alpha}}=g_{\alpha}$, then (N, g) is lean uppers bound for $\left\{\left(N_{\alpha}, g_{\alpha}\right)\right\}$. Hence by Zorn's Lemur I has a maximal element (\tilde{M}, \tilde{f}). If $\tilde{M} \neq X$, pick $z_{0} \in X-\tilde{M}$ and set \tilde{F}_{1} equal to the limen span of \tilde{M} and z_{0}. Then by prorions argument \exists a limen fremetional $\Phi: \tilde{M}_{1} \rightarrow \mathbb{R}$ sunk that $\Phi \mid \tilde{M}=\tilde{f}$ and $\|\Phi\|=1$. This contradicts the masimatity of (\tilde{M}, \tilde{f}). Hence $\tilde{M}=X$. Set $F=\tilde{f}$. This pones the Nalun-Bamarle Theorem for $\mathbb{K}=\mathbb{R}$.

If $k=\mathbb{C}$, then lit $u=$ Ref. From the Proposition, $\|u\|=\|f\|$. By tram- Banach fer $\mathbb{K}=\mathbb{R}$, u has a \mathbb{R} - limen extension $\tilde{u}: x \rightarrow \mathbb{R}$ s.t. $\|\tilde{u}\|=\|u\|$. Now defies

$$
F: X \longrightarrow \mathbb{C}
$$

by

$$
F(x)=\tilde{u}(x)-i \tilde{u}(i x) \quad x \in X .
$$

From ow t earlier Proposition, F is complex limen, is an extension of f and

$$
\|F\|=\|\tilde{u}\|=\|u\|=\|f\| . \quad \text { abe. } \cdot d .
$$

