(a) Let
$$X = \bigcup_{n=1}^{\infty} E_n$$
 with each E_n compart. For each nell,
 $\mu(E \cap E_n)$ is finite and one can find $V_n \supseteq E \cap E_n$ such street
 $\mu(V_n) \leq \mu(E \cap E_n) < \frac{2}{2^n}$. Let $V = \bigcup V_n$
 $V - E \subseteq \bigcup (V_n - (E \cap E_n))$ and hence $\mu(V - E) < e$
Applying this to E^c we get $W \supseteq E^c$, $W \text{ open}_{2^n} \leq E =$
 $\mu(W - E^c) < E$.
Let $F = W^c$. Then $F \subseteq E$. Moreover $E - F = W - E^c$ and

have
$$\mu(V-F) = \mu(V-E) + \mu(E-F)$$

 $\leq \mu(V-E) + \mu(W-E^{c}) \leq 2.2.$
This proves (A)
(b) Let $Hh = \hat{U}$ Ei, n E B. Then the is compart and $Hu S X$.
Let EEM. We will to show that $\mu(E) = \sup \{\mu(E)\} \in EE$, E compart]. The non-
trived case is the case $\mu(E) = \infty$. From (A), we can find a closed subst FAE
St. $\mu(F) = \infty$. Note $fHn(F]$ is an increasing sequence in M_{1} with $UHn(F) = F$
The follows that given $M > 0$, $\exists NEBD = t$. $\mu(H_{1}\cap F) > M + MZND$. Since
 $Hn(F) is compart for each n_{1} are and done.
(c) Let EEM. For $n \in Ho$, pick Vn open, F_{1} cloud, $Jn \geq 5DFa$,
 $\mu(V_{n}-F_{n}) = 1$. Let $A = UFn$, $B = \cap Vn$. Then A is Fo
and B is $Grown open subset $A \times is \sigma$ -compart and
 μ is $Bred measure et. $\mu(E) = \infty$ $H = OP = 0$.
 $Ho(B-A) = 1$ $H = OP = 0$ subset $A \times is \sigma$ -compart and
 μ is $Bred measure et. $\mu(E) = \infty$ $H = C(N) \rightarrow C$ qurin by
how have a pointer functioned $R = C(N) \rightarrow C$ qurin by$$$$

Nf = Jf dr, fe cc (X). Recall Ifl ∈ max HI. X suppf, and hence Jx HI dµ ≤ max HI. µ(suppf) <s. By Bisz's rep², J a meanne σ, recessarily regular from the previous results, Such that Jx f dµ = Jx f dσ + f e cc (X).

Let V be open. Can find KiCKz C-- CKuC--, Ei compart 3.6.
UKu = V, miee any open set is c-compart.
By Unysolu & fu, KuX fuXV. Let g=max (fig-sfu).
Then gn Erc(X) and gn XV. By Mer, we have

$$\mu(v) = him \int gn d\mu = him \int_X fu dr = r(v).$$

Thus
$$\mu = \sigma$$
 on open sets. Next let K be compart. Then $V = K^{C}$ is open
and hence σ -compart. In pentrember we can find compart sets
 $H_1 \subset H_2 \subset \ldots \subset H_m \subset \ldots$

such that
$$\forall \exists \exists \forall \forall n = \forall n^{c}$$
, then $\{\forall h\}$ is a
decreasing sequence of open sets such that $\int \forall n = k$. We can
find, for each $n \in \mathbb{N}$, $g_n \in C(X) \ S.t. \ k \prec g_n \prec \forall n$. Set
 $f_n = \min\{g_1, ..., g_n\}$. Then $f_n \in C(X)$, and $f_n \notin X_k$ as $n \to \infty$
None $\int \exists n d\mu = \int \exists n d\sigma < \infty \forall n$, and since $\{ \exists n \} is$
decreasing $D \subset T$ applies to both sequences of integrals and we
get $\int_X X_{ik} d\mu = \int_X X_{ik} d\sigma$, i.e. $\mu(k) = \sigma(k)$.

Thus $\sigma = \mu$ on open sets and compart sets. It follows that $\sigma(E) = \mu(E)$ for every σ -compart set E, for such an E can be written as $E = \bigcup H_n$, H_n compart, $H_n \subset H_{n+1} \to n$. In penticular $\sigma(F) = \mu(F)$ for every closed set F (closed sets are σ -compart for X is σ -compart). From here it is clean Itiat

union of members A.D.
If o, u are Bod measures on X such that

$$\mu(Q) = \sigma(Q) < oD$$
 $\forall Q \in \Omega$
there σ and μ are regular and $\sigma = \mu$. We point out that
 $\mu(E)$ and $\sigma(E)$ are finite for compart (= by (a) and (b) above.

such that
$$B(x, e) \subseteq V$$
. For each r, z hes in orally one
member of Ωr , say $Q_r(x)$. Rick r so that $\overline{in}/2^r \leq \epsilon$. Now if
a, b $\in Q_r(x)$, then $|a-b| \leq \sqrt{in}/2^r \leq \epsilon$, where $Q_r(x) \subset B(x, \epsilon) \subset V$. Thus V
 V is the union of all members of Ω lying entirely within V .
Let A_1 be the collection of those members of Ω , which he entirely
in V . From $\Omega_2, \Omega_3, \ldots$ remove those boxes which he inside some
box in A_1 . From what remains pick all boxes in Ω_2 lying entirely
within V . Call this A_2 . From $\Omega_3, \Omega_4, \ldots$ remove those boxes which
he any of the boxes in A_1 or A_2 . From what remains pick all
boxes in Ω_3 lying entirely in V . Call this collection A_3 . Proceeding
this way we have $A_1, A_2, A_3, A_{4,-\cdots}$, subsets of Ω . If $A = \bigcup A_3$,
then clearly $V = \bigcup Q$, and $A \subset \Omega$.

Then m=0.

Prof: First note that every open set in Rⁿ can be written as the union of closed balls within it where radii are rational and whose centres have rational coordinates. Thus every open set in Rⁿ is o-compart. Using 4 above and the example above, we conclude that $\sigma=\mu$.