Leitme 8

As before X is locally compart Tz, A: Ce(X) -> C a positive livean functional. As usual V's denste opene, F's compart. If nothing is said about V and K, this will be the underlying assumption. We defined $\mu: P(X) \longrightarrow LO, \infty]$ as $\mu(V) = \sup \{ \Lambda f | f < V \}$ for open V and for ECX. by u(E)= inf f u(V) ECV, Vopen Je. we also defined Mp={EEP(X) n(E) < and n(E)= Sup{n(E) = CE}; M = {EEB(X) ENKEMF 4 K} The following projectics have been proven: I. I. (U.E.n) < I M(En). I. (A) µ(K) < B) µ(K) = inf {Af | K < f}; II. µ(V) = sup {µ(K) | K < V}; 1. 4 E= UEn, {En]poinnie disjont, EnEMF HNEIN, then µ(E) = ∑µ(En), and further if µ(E) <0, then E ∈ MF Too. It turns out, and we will see this soon, M is a σ-algebra containing B(X) and pr is a measure on M. Assuming this we showed that $M = \int_X f d\mu$, $f \in C_c(X)$.

Note that I and I show that KEMF, YK, and VEMF if and only if $\mu(V) < \infty$. It toms out, as we will see, M is complete w.r.t. in and MF = {EEM (E) coof

I. If EEMF and EZO, there exists an open V and a compact k
such that KCECV and
$$\mu(V-K) < \varepsilon$$
.
Boof:

We can find
$$\not\models$$
 and \lor such that $\mu(\lor) \leq \mu(E) \neq \underline{e}_{\underline{2}}$
and $\mu(E) \leq \mu(E) + \underline{e}_{\underline{2}}$. Since $\lor - \varkappa$ is open, and
 $\mu(\lor - \varkappa) \leq \mu(\lor) \leq \mu(E) + \underline{e}_{\underline{2}} < \infty$, therefore by \mathbb{I} , $\lor - \varkappa \in \mathbb{M}_{\underline{F}}$.
By \mathbb{I} , $\not\models \in \mathbb{M}_{\underline{F}}$. Thus by $\underline{\overline{1}}$
 $\mu(\lor) = \mu(\lor - \varkappa) + \mu(\varkappa)$
blunce $\mu(\lor - \varkappa) = \mu(\lor) - \mu(\varkappa)$
 $\leq \mu(E) + \underline{e}_{\underline{2}} - (\mu(E) - \underline{e}_{\underline{2}})$
 $= \varepsilon$.
 $\eta. e.d.$

Choose 270. We can find opens U and U2, comparts
$$F_1$$
 and F_2 ,
such that $F_1 \subseteq A \subseteq V_1$, $F_2 \subseteq B \subseteq V_2$, and $\mu(V_1 = F_1) \leq E$ for
 $i = 1, 2$. We have the following chain of inclusions
 $A - B \subseteq V_1 = F_2 \subseteq (V_1 - F_1) \cup (F_1 - V_2) \cup (V_2 - F_2)$
Norro $F_1 = V_2 \subseteq A - B$ and $F_1 = V_2$ is compart. The
above set of inclusions and unions show (use I)
 $\mu(A - B) \leq \mu(V - F_1) + \mu(F_1 - V_2) + \mu(V_2 - F_2)$

i.e.,
(A-B)
$$\leq 2E + \mu (E, -V_2)$$
.
Since $E_1 - V_2$ is a
compact subset of A-B we
see that A-B satisfies (H). On the alter hand
 $\mu(A-B) \leq \mu(A) \cos$. Hence $A-B \in D_{1F}$.
NOS- AUB is the digisint union of A-B and B,
and $\mu (AUB) \leq \mu(A) + \mu(B) = \infty$ (by I), and hence by \overline{W} ,
AUB is in M_F since $A-B$ and B are.
Hinally, $A \cap B = A - (A-B)$. It follows that $A \cap B \in M_F$.

Thus M is a T-algebra. If C is closed then CNF is
compart and hence in MF by I. Hence every closed ed is
in M. It follows that every open set is in M, and hence
$$M \supseteq B(X), q.e.d.$$

$$\begin{split} & \underbrace{\mathrm{III}}_{\mathrm{III}} & \mathrm{M}_{\mathrm{F}} = \left\{ \mathbf{E} \in \mathbb{M}_{\mathrm{F}} \mid \mu(\mathbf{E}) < \mathbf{eo} \right\}, \\ & \underbrace{\mathrm{Hood}}_{\mathrm{F}} : \\ & \underbrace{\mathrm{Hood}}_{\mathrm{F}} : \\ & \underbrace{\mathrm{Hood}}_{\mathrm{F}} : \\ & \underbrace{\mathrm{Hood}}_{\mathrm{Hood}} : \\ \\ & \underbrace{\mathrm{Hood}}_{\mathrm{Hood}} : \\ & \underbrace{\mathrm{Hood}}_{\mathrm{Hood}} : \\ & \underbrace{\mathrm{Hood}}_{\mathrm{Hood}} : \\ \\ & \underbrace{\mathrm{Hood}}_{\mathrm{Hood}$$

<
$$z \in \mu(H) + z$$

= $\mu(H) + 2z$.
Since $H \subset E$, this shows $E \in M_F$.

and $E = \bigcup_{n=1}^{\infty} E_n$. If $\mu(E) = \infty$, then by I, $\mu(E) = \sum_{n} \mu(E_n)$, since both sides equal ∞ . So assume $\mu(E) < \infty$. Then $\mu(E_n) < \infty$ for all $n \in \mathbb{N}$. By $\bigcup_{n=1}^{\infty}$, this means $E_n \in M_F$ for every n. By $\bigcup_{n=1}^{\infty}$ this means $\mu(E) = \sum_{n=1}^{\infty} \mu(E_n)$.

We have therefore proven the following theorem.

Theorem (The Riesz Representation Theorem) :

Prof: The uniqueness of
$$\mu$$
 satisfying (a)-(d) is clean from
Roblem 1(b), HW3. Indeed if σ is another measure satisfying
(a)-(d), then according to Roblem 1(b), HW3, $\mu(E) = \sigma(E)$ for all
compart sets E . By (c) and (d), $\mu(E) = \sigma(E)$ $\forall E \in M$. Rogenties
(a)-(d) have been proven. Rogenty (e) is obvious since such
an A must bie in M_F (by defin of M_F) and $M_F \subset M$.
q.e.d.

Permark: Note that (e) says
$$\mu$$
 is complete. Here are some remarks to help
you integrate what is above with what you may see in related courses (e.g.,
the Potubilistic Measure Theory course). First note that our μ is defined
on P(X), but may not be a measure there. It is so on M and
hence on D(X). For S CX, if we define $\mu^*(S) = \inf \{\mu(E) \mid E \ge S\}$,
then by (c) of the Theorem, $\mu^*(S) = \inf \{\mu(V) \mid V \ge S, V \text{ open}\}$. This means
 $\mu^* = \mu$ on P(X), i.e., μ on P(X) is the outer measure of μ on M.
By (e) it is clean from standard results that the completion
on (M, μ) is the completion of (D(X), $\mu_{(D(X))}$).