As before X is a locally compart Handorff spare, N: Ce(X) -> I a positive linear functional. V's denote que sets, K's compart

Lechre 7

Summory of main points of last lettine:
A function
$$\mu: P(X) \longrightarrow CO, \infty J$$
 was defined as follows:
For open sets: $\mu(V) = \sup f \Lambda f | f \prec V J$
For arbitrary sets: $\mu(E) = \inf f \mu(V) | E \subset V J$.
Three importants results we proved were
I. $\mu(U E n) \leq \sum \mu(E n)$
Recall, K denotes
compart, V open,
(b) $\mu(E) = \inf f \Lambda f | K \prec f J$
II. $\mu(V) = \sup f \mu(E) | K \subset V J$.

We also defined MF to be all ECX s.t.
$$\mu(E) = 0$$
 and
 $\mu(E) = 0$ frit(E) $|ECV_{f}$ (f).
I drows that every open V satisfies (f). So $VEM_{F} \Leftrightarrow \mu(v) < 0$.
Compart E trivially satisfy (f). By I (a), EEM_{F} . These
are two disportant classes of sets in MF.
The set M was defined to be
 $M = E |ECX, ENEEM_{F}$ for every compart E_{f} .
It is clean that every compart set is in M. Later we
will shows the following:

En order to prove
$$Nf = \int_X f \, d\mu$$
, $f \in C_c(X)$, we had observed
that it is enough to confine ourselves to real-valued f. To
show this, by replacing f by $-f$, we some that it is enough
to show

(*) — Af
$$\leq \int_{X} f d\mu$$
, $\forall f in Q(X)$ which are red-valued
Remark: $\int G_{Q}(X) \Rightarrow \int_{X} H d\mu c.o and $g_{\mu}(K) c.o = fr K compared
and $g_{\mu}(K) c.o = fr K compared.$
So let $f \in Q(X)$, $f(X) \leq \mathbb{R}$. Let $K = Supp f$. Since $f(X)$ is
cither $f(K)$ or $f(K) U f of$, it is clean $f(X)$ is compared.
Let $[a,b]$ be a finite interval $s.t.$ $f(X) \leq [a,b]$.
Suppose $8 \Rightarrow D$ is given. Rock $g_{0}, g_{15}, g_{25}, \dots, g_{15}$ g_{10}
 $g_{10} < a < g_{11} < g_{22} < \dots < g_{10} = b$
and
 $g_{11} - g_{22} < g_{22} < \dots < g_{10} = b$
Let
 $E_{i} = \int_{-1}^{-1} ((g_{i-1}, g_{i}]) \cap K$ $i = b_{1}..., h$
This means $g_{i-1} < f(X) \leq g_{11}$.$$

Note that Ei is Bord since fie continuous. Morener

$$y_i - \varepsilon \in f(\varepsilon), \quad x \in \varepsilon_i, \quad i = 1, ..., n \quad (A)$$
The sets ε_i are disjoint and their union is k . By define
 $\Im p$, there are open sets V_i , $V_i \supseteq \varepsilon_i, \quad v = 1, ..., n \quad (V_i) \leq p(\varepsilon_i) + \frac{\varepsilon}{\varepsilon_i} \quad i = 1, ..., n \quad s.t.$

$$p(V_i) \leq p(\varepsilon_i) + \frac{\varepsilon}{\varepsilon_i} \quad i = 1, ..., n \quad s.t.$$

$$p(V_i) \leq p(\varepsilon_i) + \frac{\varepsilon}{\varepsilon_i} \quad i = 1, ..., n \quad s.t.$$

$$p(V_i) \leq p(\varepsilon_i) + \frac{\varepsilon}{\varepsilon_i} \quad i = 1, ..., n \quad s.t.$$

$$p(V_i) \leq p(\varepsilon_i) + \frac{\varepsilon}{\varepsilon_i} \quad i = 1, ..., n \quad s.t.$$

$$p(V_i) \leq v_i + \varepsilon \quad v_i \cup v_i \quad \dots \quad v_i \quad and hence we can find this < V_i, \quad v = 1, ..., n \quad s.t. \quad h_i + h_i + ... + h_n \equiv 1 \quad n \quad k.$$
Since $f(x) \leq v_i + \varepsilon \quad n \quad V_i, \quad we have$

$$h_i \neq \leq (v_i + \varepsilon) h_i, \quad x \in V_i, \quad i = 1, ..., n \quad (B)$$
The simegraphities (A) and (B) are arrecial in establishing Q0.
Since $s.uppf = k \quad and \quad h_{1+...-1} + h_n \equiv 1 \quad n \quad k, me have \quad f = \frac{2}{3} h_i f.$
This means, in particular, that $k < \frac{2}{3}h_i$, $whence \quad hy \quad F(b)$

$$p(k) \leq \sum_{i=1}^{n} h_{k_i} \quad (b)$$

$$h_i + v_i > 0 \quad v = 1, ..., n. \quad (b)$$
Thus
$$h_i = \sum_{i=1}^{n} (h_i + \varepsilon) \wedge h_i \quad (b_i \in b)$$

$$= \sum_{i=1}^{n} (1e_i + v_i + \varepsilon) \wedge h_i \quad (b_i \in b)$$

$$= \sum_{i=1}^{n} (|a| + y_{i} + \epsilon) Ah_{i} - |a|\mu(k) (b_{y}(c))$$

$$= \sum_{i=1}^{n} (|a| + y_{i} + \epsilon)\mu(y_{i}) - |a|\mu(k) (\lim_{i \to i} |a| + \epsilon) - \frac{1}{2} + \frac{1}{2}$$

$$\overline{\mathbb{N}}. \quad \text{Suppose } E = \bigcup_{n=1}^{\infty} E_n, \text{ where } E_1, E_2, \dots, E_n, \dots \text{ are pairwise}$$

disjoint members of M_F . Then
 $\mu(E) = \sum_{n=1}^{\infty} \mu(E_n),$
 $\Pi_{n=1}$
 $\Pi_{n=1}$
 $\Pi_{n=1}$
 $\Pi_{n=1}$
 $\Pi_{n=1}$
 $\Pi_{n=1}$
 $\Pi_{n=1}$
 $\Pi_{n=1}$

Let us first prone that if
$$K_{1,s} K_{2}$$
 are disjoint compart sets
then $\mu(K_{1} \cup K_{2}) = \mu(K_{1}) + \mu(K_{2})$. Sitting $V = X \cdot K_{2}$, we see
 $K_{1} \cup K_{2} = \mu(K_{1}) + \mu(K_{2})$. Sitting $V = X \cdot K_{2}$, we see
 $K_{1} \cup K_{2} = \mu(K_{1}) + \mu(K_{2})$. Sitting $V = X \cdot K_{2}$, we see
 $K_{1} \cup K_{2} = \mu(K_{1}) + \mu(K_{2})$. Sitting $V = X \cdot K_{2}$, we see
 $K_{1} \cup K_{2} = \mu(K_{1}) + \mu(K_{2})$. Sitting $V = X \cdot K_{2}$, we see
 $K_{1} \cup K_{2} = \mu(K_{1}) + \mu(K_{2})$. Sitting $V = X \cdot K_{2}$, we see
 $K_{2} \cup K_{2} = \mu(K_{1}) + \mu(K_{2})$. Sitting $V = X \cdot K_{2}$, we see
 $K_{1} \cup K_{2} \cup K_{2} = \mu(K_{1}) + \mu(K_{2})$. Sitting $V = X \cdot K_{2}$, we see
 $K_{1} \cup K_{2} \cup K_{2} = \mu(K_{1}) + \mu(K_{2}) + \mu(K_{2})$. Sitting $V = X \cdot K_{2}$, we see
 $K_{1} \cup K_{2} \cup K_{2} \cup K_{2} = \mu(K_{1}) + \mu(K_{2}) + \mu(K_{2})$. Such that
 $K_{1} \cup K_{2} \cup K_{2}$

Note that f=1 on K and f=0 on k2.

and
$$\Lambda g < \mu(K_1 \cup K_2) + E$$
.
Now $K_1 \times gf$ and $K_2 \prec g(1-f)$. Again by II
 $\mu(K_1) + \mu(K_2) \leq \Lambda(gf) + \Lambda(g(1-f)) = \Lambda g < \mu(K_1 \cup K_2) + E$.
Thus $\mu(K_1) + \mu(K_2) \leq \mu(K_1 + K_2)$. Thus $\mu(K_1) + \mu(K_2) = \mu(K_1 + K_2)$
by I.

IV is clearly tome (via I) if $\mu(E) = 00$. So assume

$$\mu(E) \leq 60. \text{ (hore } E = 0. \text{ Since } En \in M_{\text{F}} \text{ for } n \in \mathbb{N}_{2}, \text{ three}$$

$$= \text{exists, for each } n \in \mathbb{N}_{3}, \text{ a compart } \text{ subset } H_{n} \in \mathbb{N}_{3}$$

$$= \text{such } \text{thet}$$

$$= \mu(E_{n}) \leq \mu(H_{n}) + \frac{d}{2^{n}}.$$
Set $K_{n} \equiv H, 0 \text{ H}_{2} 0 \dots 0 \text{ H}_{n}, n \in \mathbb{N}.$ Then K_{n} is compart.
Moreover, since H_{n} 's are poinwise disjoint, from what we've proven
$$= \mu(K_{n}) \equiv \mu(H_{1}) + \dots + \mu(H_{n}), \quad n \in \mathbb{N}.$$
Now,
$$= \mu(K_{n}) = \sum_{i=1}^{n} \mu(H_{i}) > \sum_{i=1}^{n} \mu(E_{i}) - E, \quad n \in \mathbb{N}.$$

$$= \frac{1}{2^{n}} (E_{i}), \quad \text{since } E = 0 \text{ was orbitrary. We are also also assig I.$$

$$= \frac{1}{2^{n}} \mu(E_{i}), \quad \text{since } E = 0 \text{ was orbitrary. We are also assig I.$$

$$= \frac{1}{2^{n}} \mu(E_{i}) - \mu(K_{n}) \leq \frac{1}{2^{n}} \mu(E_{i}) - E, \quad \text{the first } \mu(E_{i}) - E, \quad \text{the first } \mu(E_{i}) - E, \quad n \in \mathbb{N}.$$

$$= \frac{1}{2^{n}} (E_{i}) - \mu(K_{n}) \leq \frac{1}{2^{n}} \mu(E_{i}) - E, \quad n \in \mathbb{N}.$$

$$= \frac{1}{2^{n}} (E_{i}) - \mu(K_{n}) \leq \frac{1}{2^{n}} \mu(E_{i}) - E, \quad n \in \mathbb{N}.$$

$$= \frac{1}{2^{n}} (E_{i}) - \mu(K_{n}) \leq \frac{1}{2^{n}} \mu(E_{i}) - E, \quad n \in \mathbb{N}.$$

$$= \frac{1}{2^{n}} (E_{i}) - \mu(K_{n}) \leq \frac{1}{2^{n}} \mu(E_{i}) - E, \quad n \in \mathbb{N}.$$

$$= \frac{1}{2^{n}} (E_{i}) - \mu(K_{n}) \leq \frac{1}{2^{n}} \mu(E_{i}) - E, \quad n \in \mathbb{N}.$$

$$= \frac{1}{2^{n}} (E_{i}) - \mu(K_{n}) \leq \frac{1}{2^{n}} \mu(E_{i}) - E, \quad n \in \mathbb{N}.$$

$$= \frac{1}{2^{n}} (E_{i}) - \mu(K_{n}) \leq \frac{1}{2^{n}} \mu(E_{i}) = \frac{1}{2^{n}} \mu(E_{i}) - E, \quad \text{the othere } E = 0, \quad 1 \text{ for } 1 \text{ for }$$