Some lists of measure throng will be done in the tutoral by Nagrowanan

Positive functionals on Ce(X): Let X be a locally compart Handorff space and as usual (see His problems) Co (X) denotes the space of continous complex-valued functions on X with compart support A linear frontional $\Lambda: \mathcal{C}(\mathbf{x}) \longrightarrow \mathcal{C}$ is said to be positive if Nf 20 for fin Cc (X) such that f70. The standard example of a positive functional on Cc (x) arises from meanne throng. If u: B(x) -> TO, 00] is a measure such that $\mu(k) < \infty$ for every compart set K in X, then f → fifdn , fe (cx) défines a pointire linear frontional on CeCX). Note that since f E G(X), and µ (supp f) < 0, therefore Jx Hldyn co. This means fel'(y), whence fin is a well-defined complex number. The point of this discussion is to show that the above class of examples of pointine linear functionals

Suppore

 $\Lambda: \mathcal{L}(X) \longrightarrow \mathbb{C}$

is a pointine functional on X. We wont to find a σ-algebra M D@(X) and a measure $\mu: M \longrightarrow CO, \infty]$ such that $\Lambda f = \int_X f d\mu + f \in C_c(X)$. To make μ unique we require a for more properties (e.g. $\mu(k) < \infty$, $\mu(V) = Sup {\mu(k) | k \in V}, \mu(k) = inf {\mu(V) | k \in V}$ etc., which

we will emmanute later).
Hue is how we start the "contraction" of
$$\mu$$
 from
N. Set
 $\mu(N) = \sup\{N\} f \neq V\}$ for V gan in X.
Note that if $V_1 \subseteq V_2$ then $\mu(V_1) \equiv \mu(V_2)$. In particular
for V gan,
 $\mu(V) \equiv \inf\{\mu(V)\} V \subseteq V_1$, W gan in XJ.
This being so, there is no resulting inservicincy if
for an arbitrary subort $E \in X$ are set
 $\mu(E) = \inf\{\mu(V)\} E \subseteq V$, V open in XJ.
Once again, if $A \subseteq B$, it is obvious that $\mu(A) \leq \mu(B)$.
I. If $\{E_n\}$ is a requessed of values $A \times$ then
 $\mu(V_1 \in E_n) \leq \sum_{n=1}^{\infty} \mu(E_n)$.
End: lat $V_1 V_2$ be open suborts of X. We will first
show that $\mu(V_1 \cup V_2) \leq \mu(V_1) + \mu(V_2)$. To that end, let
 $g \in C_0(X)$ be s.t. $g \prec V_1 \cup V_2$. Let $E = \sup g$.
Hence we have:

$$\mu(V) \leq \sum_{n=1}^{\infty} \mu(E_n) + \mathcal{E},$$

i.e. $\mu(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} \mu(E_n) + \mathcal{E}.$
Since \mathcal{E}_{70} is arbitrary, we are done. μ

I. Let K be compart. Then
(a)
$$\mu(K) < \infty$$
, and
(b) $\mu(K) = inf \{ Nf | K < f \}.$

Before proving more about in, have are some definitions.

The sete MF and M: We define MF to be the collection
of subsets E of X such that
$$\mu(E) < \infty$$
 and s.t.
 $\mu(E) = \sup \{\mu(E)\} \mid E \subset E, E \ compart \}$ (t)
By I (a), $E M_F$ for compart sets E (such E trivially
settofy (t)). By II, if V is open then $V \in M_F$ if and
only if $\mu(V) < \infty$. To summarize:
(i) $E \in M_F$ for every compart E
(ii) $V \in M_F$ for every open set V with $\mu(V) < \infty$.
Let

he will prove that after. In fant more is true. M is <u>Complete</u> in the sense that if SCE, EEM, m(E)=0,

then SEM (and necessarily
$$\mu(S) = 0$$
. Moreover one can
show that $M_F = \{ E \in \mathcal{M} \mid \mu(E) \in \mathcal{M} \}$.

This is enough for the following reason: Suppose

$$f \in C_c(x)$$
 and is real-valued. Then $(-f)$ is also real-valued
and hence
 $\Lambda(-f) \leq \int_{-1}^{-1} (-f) d_{fr}$

which when combined with the inequality in the red box
gries
$$\Lambda f = \int_X f d\mu$$
 for all real-valued fin $G(X)$. The idea is to approximate
f by specific sorts of simple functions. In quester details, let $k = Supp f$,
pick 87D, and let $[a,b]$ be an interval s.t. $[a,b] \supset f(X)$. For each C7D
pick yo, y, s..., y_n $\in \mathbb{R}$ s.t. $y_0 < a < y_1 < y_2 < ... < y_n = b$ with $y_1 - y_{1-1} < \varepsilon$
for $i = b \dots n$. Set $E_i = f^{-1}((y_{C-1}, y_i]) \cap k$ $i = 1, \dots, n$. Then one shows
 $k = \sum_{i=1}^{n} (y_i - \varepsilon) \lambda_{E_i} < f$, and that $\Lambda f \leq \int_X s d\mu + \varepsilon (constant)$. Details
will be grien in the rest lecture.