There is in a complex rate space and
$$\int_{X} (-) d\mu$$
 is a complex
linear functional on $L'(\mu)$.
Ineq: we have already seen that if f,g are complex wible then
to is aft pg for every $d, \beta \in C$. Suppose $f,g \in L'(\mu)$ and $d, \beta \in C$.
Then
 $\int_{X} |df + \beta g| d\mu \leq \int_{X} \{k\} | |\beta| + |\beta| |g| \int d\mu$
 $= |d| \int_{X} |f| d\mu + |\beta| \int_{X} |g| d\mu < \infty$.
Thus $df + \beta g \in L'(\mu)$, where $L'(\mu)$ is a complex vector space.
The $\int_{X} (f + g) d\mu = \int_{X} fd\mu + \int_{X} g d\mu$
for f,g in $L'(\mu)$, it is exactly to prove this when f,g are
real valued by definition $f = \int_{X} (f + g) d\mu$ on complex furthers in
 $L'(\mu)$.
So assume $f,g \in L'(\mu)$ and are real valued. Set
 $h = f + g$.
Then

$$h^{+} + f^{-} + g^{-} = f^{+} + g^{+} + h^{-}.$$
We have seen that $\int_{X} (-) d\mu$ requise addition for (0,0)
valued functions. Since all the trues occurring on both
sides of the above relation are (0,0) valued we have

$$\int_{X}^{h^{+}} d\mu + \int_{X}^{f^{-}} d\mu + \int_{X}^{g^{-}} d\mu = \int_{Y}^{f^{+}} d\mu + \int_{X}^{f^{-}} d\mu.$$
From here one sees easily that

$$\int_{X}^{h} d\mu = \int_{X}^{f} d\mu + \int_{X}^{g} d\mu$$
as required.
It remains to show that

$$\begin{cases} 29 \\ f^{+} f^{-} g h = d \int_{X}^{f} d\mu + f^{-} g d\mu \\ f^{+} f^{-} g h = d \int_{X}^{f} f^{+} h = dec, f \in L^{1}(\mu).$$
Pecall that

$$\begin{cases} 29 \\ f^{-} f^{+} g h = d \int_{X}^{f} f^{+} h = dec, f \in L^{1}(\mu).$$
Pecall that

$$\begin{cases} 29 \\ f^{-} f^{-} g h = d \int_{X}^{f} f^{+} h = dec, f \in L^{1}(\mu).$$
Pecall that

$$\begin{cases} 29 \\ f^{-} f^{-} g h = d \int_{X}^{f} f^{+} h = dec, f \in L^{1}(\mu).$$
Pecall that

$$\begin{cases} 29 \\ f^{-} g h = c \int_{X}^{g} dh = dec, f \in L^{1}(\mu).$$
Pecall that

$$\begin{cases} 29 \\ f^{-} g h = c \int_{X}^{g} dh = dec, f \in L^{1}(\mu).$$
Pecall that

$$\begin{cases} 29 \\ f^{-} g h = c \int_{X}^{g} dh = dec, f = g^{-} and f = decking up f \in L^{1}(\mu) and f = deckinition dive (eq, f = dec, f = g^{-} and f = decking up f \in L^{1}(\mu) and f = decking up f deck (h, f = deck, f = decking, f = deck, f = deck, f = decking, f = dec$$

Theorem: Suppose
$$f \in L^{1}(\mu)$$
, then
 $\int \int_{X} f d\mu = \int_{X} [f | d\mu].$
Proop:
Let $f \in L^{1}(\mu)$ and $z = \int_{X} f d\mu$. If $z = 0$ there is nothing
to prove. Otherwise set $z = \overline{z}/\overline{z}$. Then $|z| = 1$ and $z = |z|$.
Let $u = \operatorname{De}(u+1)$. Then
 $\int_{X} f d\mu = |z| = dz = d\int_{X} f d\mu = \int_{X} u d\mu$
 $= \int_{X} |f| d\mu$.
The equality $\int_{X} u d\mu = \int_{X} u d\mu$ follows from the fact that $\int_{X} u f d\mu$ is real
(in fact equal to $|z|$). The last inequality holds because $|f| - u \gg 0$
 $q - d$.

Since
$$|f_n| \in g \forall n$$
, it follows that $f_n \in L'(\mu) \forall n$.
Since $\left| \int_X (f_n - f) d_{\mu} \right| \leq \int_X H_n - f(d_{\mu})$, deanly (**) implies (*).
To prove (**) apply Fatoris Lemma to $2g - H_n - f(t_n)$ get

$$\int_{X} 2g \, d\mu = \int_{X} \lim_{n \to \infty} i \left(2g - \frac{1}{2} - \frac{1$$

$$\int_{\mathcal{E}} \{|f| - |g|\} d\mu = \int_{\mathcal{E}} |f - g| d\mu = \int_{\mathcal{E}} |f - g| d\mu + \int_{\mathcal{E}} |f - g| d\mu$$

= 0 + 0 = 0 for all EMM. In general we do not distinguide between such f and g and write f=g a.e. [4] (a.e. = "almust