Tho rem: If $f_{u}: x \longrightarrow[0, \infty]$ is mable fer $n \in \mathbb{N}$ and

$$
f(x)=\sum_{n=1}^{\infty} f_{n}(x) \quad(x \in X),
$$

then

$$
\int_{x} f d \mu=\sum_{n=1}^{\infty} \int_{x} f_{n} d_{\mu} .
$$

Proof:
Let $\{\sin \}$ and $\left\{t_{n}\right\}$ be simple noble functions s.t. $0 \leq s_{n}, t_{n}$ and $s_{n} \uparrow f_{1}$ and $t_{n} \uparrow f_{2}$. We bruno such sequences exist. Funltine, we have shown that $\int_{x}\left(s_{n}+t_{n}\right) d \mu=\int_{x} \operatorname{sen} d_{\mu}+\int_{x} t_{n} d \mu$.
Since $0 \leq s_{1}+t_{1} \leq s_{2}+t_{2} \leq \ldots$ and $s_{n}+t_{n} \longrightarrow f_{1}+f_{2}$, from the monotone commence theovern we see that

$$
f_{x}\left(f_{1}+f_{2}\right) d \mu=\int_{x} f_{1} d \mu+\int_{x} f_{2} d \mu .
$$

By induction if $g_{N}=f_{1}+f_{2}+\ldots+f_{N}$, then

$$
\int_{x} g_{N} d \mu=\sum_{n=1}^{N} \int_{x} f_{n} d_{\mu}
$$

Now $g_{N} \longrightarrow f$ and $0 \leqslant g_{1} \leqslant g_{2} \leqslant \ldots$. Hence
by the MCT (the "monotone convergence theremin")

$$
\int_{x} f d \mu=\sum_{n=1}^{\infty} \int_{x} f_{n} d \mu
$$

as required.
Remarks

1. Recall that a sequence $\left\{a_{n}\right\}$ can be veganted as a funtim on \mathbb{N}. If $f=\left\{a_{n}\right\}$ is a sequence with $a_{n} \in[0,0], n \in \mathbb{N}$,
and μ is the conting measme on $(\mathbb{N}, P(\mathbb{N}))$ lhen

$$
\int_{x} f d \mu=\sum_{n=1}^{\infty} a_{n} .
$$

2. The above theoven trandates to a well-bnown theovem about double series of non-negative extended numburs, namely:

Corollany: If $a_{0 j} \geqslant 0$ for $i, j \in \mathbb{N}$, then

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j}=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{i j} .
$$

Theorem (Faton's lemma): If $f_{n}: x \longrightarrow[0, \infty]$ is $m^{\prime} b l e$ for eearh $n \in \mathbb{N}$, then

$$
\int_{x} \operatorname{liminin}_{n \rightarrow \infty} \text { fu } d \mu \leqslant \liminf _{n \rightarrow \infty} \int_{x} f_{u} d \mu
$$

Pron :
Ior $k \in N$ defrine

$$
g_{k}=\operatorname{sinf}_{n \geqslant k} f_{n} .
$$

Let

$$
g=\operatorname{limin}_{n \rightarrow \infty} f_{n}
$$

Then $g_{k}: x \rightarrow[0, \infty]$ ia m'ble. Monvonen
(a) $0 \leq g_{1} \leq g_{2} \leq \ldots$ and $g_{k} \rightarrow g$ as $k \rightarrow a$
(b) $\quad g_{k} \leqslant$ fn $\quad \forall n \geq k, k \geq 1$

From (b) we see that for $k \geqslant 1$,

$$
\int_{x} g_{k} d \mu \leqslant \int_{x} f_{n} d \mu \quad \forall n \geqslant k,
$$

whence $\int_{x} g_{k} d \mu \leqslant \operatorname{iin}_{n \geqslant k} \int_{x} f_{n} d \mu$.
The right side is an increasing sequence in k whore limit as $k \rightarrow \infty$ is by difirtion $\operatorname{liminin}_{n \rightarrow \infty} \int_{x} f_{n} d \mu$. Thus letting $k \rightarrow \infty$, and using the MCT fer $\left\{g_{k}\right\}$ we get

$$
\int_{x} g d \mu \leqslant \lim _{n \rightarrow \infty} \operatorname{sif}_{x} \int_{x} \text { fun } d \mu
$$

q.e.d.

Theovern: Suppose $f: x \rightarrow[0, \infty]$ in m^{2} ole, and

$$
Q(E)=\int_{E} f d \mu \quad(E \in M)
$$

Then φ is a measure on M, and

$$
\int_{x} g d \varphi=\int_{x} g f d \mu
$$

for every m'ble g on X with range $[0, \infty]$.
Poof:
Let $E_{1}, E_{2}, E_{3}, \ldots$ be a sequence of disjoint members of M, and let $E=\bigcup_{n} E_{n}$.

Then

$$
x_{E} f=\sum_{j=1}^{\infty} x_{E j} f
$$

For on earlier theorem, this means

$$
\int_{x} x_{E} f d \mu=\sum_{j=1}^{\infty} \int_{x} x_{E_{j}} f d \mu
$$

whence

$$
S_{E} f d \mu=\sum_{j=1}^{\infty} \int_{E_{j}} f d \mu .
$$

This means $\quad Q(E)=\sum_{j=1}^{\infty} \varphi\left(E_{j}\right)$.
Moreover, clearly $\phi(\phi)=0$. Hence φ is a positions measure on M.

Suppose s is a simple m'bee function on X, taking values in $(0, \infty)$. Writing

$$
s=\sum_{i=1}^{n} \alpha_{i} X_{A_{i}}
$$

with $\alpha_{1}, \ldots, \alpha_{n}$ distinct non-negature real number, and $A_{i} m^{\prime}$ ble, we see from earlier results that

$$
\begin{aligned}
\int_{x} s d \varphi & =\sum_{i=1}^{n} \alpha_{i} \varphi\left(A_{i}\right) \\
& =\sum_{i=1}^{n} \alpha_{i} \int_{A_{i}} f d \mu \\
& =\sum_{i=1}^{n} \alpha_{i} \int_{x} x_{A_{i}} f d \mu \\
& =\int_{x}\left(\sum_{i=1}^{n} \alpha_{i} x_{A_{i}}\right) f d \mu \\
& =\int_{x} s f d \mu
\end{aligned}
$$

Now suppose g is as in the staternent of the thorn. Pick a sequence of m'ble simple functions $\left\{s_{n}\right\}$ with $0 \leq s_{1} \leq s_{2} \leq \ldots, \Delta_{n} \rightarrow g$ as $n \rightarrow \infty$. Then we have by MCT (applied move then once)

$$
\begin{aligned}
\int_{x} g d \varphi & =\lim _{n \rightarrow \infty} \int_{x} \operatorname{sn}_{n} d \varphi \\
& =\lim _{n \rightarrow \infty} \int_{x} \operatorname{sn} f d \mu \\
& =\int_{x} g f d \mu .
\end{aligned}
$$

The last equality is by the MCT applied to the sequence $\{\ln f\}$. Note that $0 \leq s_{1} f \leq s_{2} f \leq \ldots$ and $\lim _{n \rightarrow \infty}$ bu $=g f$.

