Theorem:
$$4f_{n}: X \longrightarrow \mathbb{E}_{0,\infty}$$
 is mille for ne IN and
 $f(x) = \sum_{n=1}^{\infty} f_{n}(x)$ (x \in X),
then
 $\int_{X} f d\mu = \sum_{n=1}^{\infty} \int_{X} f_{n} d\mu.$

terf:
Let {bn} and {tn} be sniple mille functions
s.t.
$$0 \leq s_n$$
, the and $s_n \uparrow f_1$ and $t_n \uparrow f_2$. We
burst such sequences exist. Fultier, we have
bloosen that $\int_{X}(g_n+t_n)dy_n = \int_{X} g_n dy_n + \int_{Y} t_n dy_n$.
Since $0 \leq s_1 + t_1 \leq s_2 + t_2 \leq \dots$ and $g_n + f_n dy_n$.
Since $0 \leq s_1 + t_1 \leq s_2 + t_2 \leq \dots$ and $g_n + f_n + f_2$,
from the monotone consume theorem are see thed
 $\int_{X}(f_1 + f_2) dy_n = \int_{X} f_1 dy_n + \int_{X} f_2 dy_n$.
By induction of $g_n = f_1 + f_2 + \dots + f_N$, then
 $\int_{X} g_N dy_n = \sum_{n=1}^{N} \int_{X} f_n dy_n$
Norse $g_n \longrightarrow f$ and $0 \leq g_1 \leq g_2 \leq \dots$. Hence
by the MCT (the monotone consequence theorem")
 $\int_{X} f_1 dy_n = \sum_{n=1}^{\infty} \int_{X} f_n dy_n$
as required.
 $g_1 \in d_n$.

Remarks 1. Recall that a sequence fanz can be regarded as a furtion on IN. If f= {and is a sequence with and [0,0], n E IN,

$$\begin{split} & \int_{X} g_{k} d\mu \leq \int_{X} f_{k} d\mu \quad \forall \ n \geq k, \\ & \text{whence} \qquad \int_{X} g_{k} d\mu \leq \inf_{N \geq k} \int_{X} f_{k} d\mu, \\ & \text{The oright aide is an inversing sequence in k where \\ & \text{divist as } k \to \infty \text{ is by diffection divising } \int_{X} f_{k} d\mu. \\ & \text{This litting } k \to \infty, \text{ and using the MCT for } \\ & \int_{X} g d\mu \leq \dim \inf_{N \to \infty} \int_{X} f_{k} d\mu. \\ & f \otimes k \int_{X} g d\mu \leq \dim \inf_{N \to \infty} \int_{X} f_{k} d\mu. \\ & f \otimes k \int_{X} g d\mu \leq \dim \inf_{N \to \infty} \int_{X} f_{k} d\mu. \\ & g d\mu \leq \dim \inf_{N \to \infty} \int_{X} f_{k} d\mu. \\ & g d\mu \leq \int_{X} g d\mu \leq \int_{X} g d\mu \\ & g d\mu \leq \int_{X} g d\mu \\ & g d\mu = \int_{X} g f d\mu \\ & \int_{X} g d\mu = \int_{X} g f d\mu \\ & fr \ avery m^{2} ke g \text{ on } X \text{ with range } [0, \infty]. \\ & \text{Then } f \text{ is a nearne on } M, \text{ and } \\ & \int_{X} g d\mu = \int_{X} g f d\mu \\ & \text{for every } m^{2} ke g \text{ on } X \text{ with range } [0, \infty]. \\ & \text{Then } Ke f = \sum_{i=1}^{N} ke_{i} f. \\ & \text{Then } membors f M, \text{ and } kt \quad E = \bigcup En \\ & \text{Then } \\ & \chi \in f d\mu = \int_{X} f \int_{X} f \int_{Y} f d\mu \\ & \int_{X} f \int_{Y} d\mu = \int_{X} f \int_{Y} f d\mu \\ & \int_{X} f \int_{Y} f d\mu = \int_{X} f \int_{Y} f \int_{Y} f d\mu \\ & \int_{X} f \int_{Y} f d\mu = \int_{X} f \int_{Y} f \int_{Y} f d\mu \\ & \int_{X} f \int_{Y} f d\mu = \int_{X} f \int_{Y} f \int_{Y} f f d\mu \\ & \int_{X} f \int_{Y} f \int_{Y} f \int_{Y} f \int_{Y} f \int_{Y} f d\mu \\ & \int_{X} f \int_{Y} f \int_{Y} f \int_{Y} f \int_{Y} f \int_{Y} f d\mu \\ & \int_{X} f \int_{Y} f \int_{$$

whence

$$J_{E} = f d_{\mu} = \sum_{j=1}^{\infty} \int_{E_{j}} f d_{\mu}.$$
This means $\varphi(E) = \sum_{j=1}^{\infty} \varphi(E_{j}).$
Moreoner, clearly $\varphi(\varphi) = 0$. Hence φ is a positive measure on $M.$
Suppose b is a sample mille function
on X , taking values in $CO_{j}O_{j}$. Writing
$$b = \sum_{j=1}^{\infty} A_{i} X_{A_{i}}$$
with d_{i}, \dots, d_{m} distinct non-negative real numbers,
and A_{i} mille, we see from earlier results that
$$\int_{X} d\varphi = \sum_{i=1}^{\infty} A_{i} \varphi(A_{i})$$

$$= \sum_{i=1}^{\infty} A_{i} \int_{A_{i}} f d_{\mu}$$

$$= \int_{X} (\sum_{i=1}^{\infty} A_{i} X_{A_{i}}) f d_{\mu}$$

$$= \int_{X} a_{i} f d_{\mu}.$$
Now suppose g is as in the statement q the theorem.
Pick a sequence g mille simple functions $f = \int_{X} f$
with $O = A_{i} \leq A_{i} = 0$.