Ang 22, 2018	Ang	22	,20	18
--------------	-----	----	-----	----

Conventions at 00 = 00 + a = 00 if OSASO $a \cdot a = a \cdot a = \begin{cases} a & i \\ 0 & i \\ 0$ Check that if and a bit b, an bizo +n, then and add. This means that sums and products of meanwable functions into [0,00] and meanonable. Integration of positive functions Throughout this section is a positive measure on a m'ble space (X, M). Definition: Let s: X -> CO,00) be a m? de simple fruntion. I note as is excluded Write b = Zi di XAi where dy, ..., an one the distinct values of s. Lit E EM. Define Seedn = Z din (Aine). the convention O. D = D used for it may happen that di= D and p (AiNE)= a

Lectrone 4

$$f: X \longrightarrow [0, \infty] \subset \infty \text{ is included.}$$

is noble and $E \in \mathcal{M}$, define
$$\int_E f d\mu = \sup \int_E b d\mu,$$

Remark:
$$\Psi f: X \rightarrow E0, \infty$$
) is m'ble and simple, we have two definitions of
 $J \in f d\mu$ — the original one with $J \in f d\mu = \sum_{i=1}^{n} \alpha_i \mu(A \in \Omega \in \Omega)$
where $f = \sum_{i=1}^{n} \alpha_i X_{A_i}$, $\alpha_1, \dots, \alpha_n$ the distinct values ηf , and
the definition $J \in f d\mu = \sup_{0 \leq s \leq f} J \in S d\mu$ with s single. The
two definition coincide because $f \in \{s\}$ sample $D \leq s \leq f\}$

Immediate consequences

ne := n/me

Ithen
$$\mu_E$$
 is a positive measure on (E, M_E) . One
checks easily from the depinitions that
 $\int_E f d\mu = \int_E (f|_E) d\mu_E$.

The above is a provisional form of more general theorems.

$$X = \bigcup_{n=1}^{\infty} E_{n},$$
To see there two relations, since fn $\leq f_{n+1}$ it
follows that $f_n(x) \geq Cb(x) \Rightarrow f_{n+1}(x) \geq b(x)$, i.e.,
 $E_n \subseteq E_{n+1}$. Next, suppose $x \in X$. hince $0 \leq c \leq 1$,
thurdpore $Cb(x) \leq f(x)$. Since $f_n(x) \rightarrow f(x)$ as
 $n \rightarrow \infty$, $\exists n \in \mathbb{N}$ such that $f_n(x) \geq cb(x)$. This
means $z \in E_n$ for this n , and hence $\bigcup E_n = X$.
We have shown that
 $E \longrightarrow \int_E Cb d\mu$, $E \in M$
is a measure on M since Cs is simple, when
ourd non-negative. It follows that
 $\lim_{n \to \infty} \int_{E_n} Cs d\mu = \int_X cs d\mu = cfs d\mu$.
Now $\int_X f_n d\mu \geq \int_{E_n} f_n d\mu \geq \int_E cs d\mu$.
Letting $n \rightarrow \infty$, we get
 $d \equiv \lim_{n \to \infty} f_x d\mu$.
Now $\int_X f_n d\mu \geq \int_E f_n d\mu$.
Now $\int_X f_n d\mu \geq \int_E f_n d\mu$.
Now $\int_X f_n d\mu \geq \int_E f_n d\mu$.
Now $\int_X f_n d\mu \geq \int_E f_n d\mu$.
Now $\int_X f_n d\mu \geq \int_E f_n d\mu$.
Now $\int_X f_n d\mu \geq \int_E f_n d\mu$.
Now $\int_X f_n d\mu \geq \int_E f_n d\mu$.
Now $\int_X f_n d\mu \geq \int_E f_n d\mu$.
This proves the result.