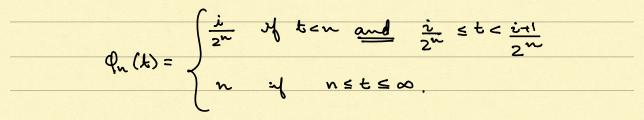
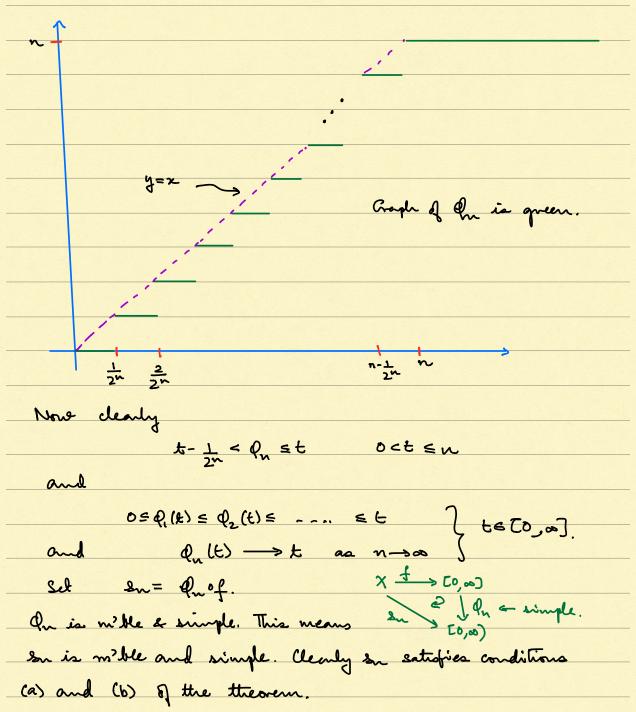
August 16, 2018

Simple functions Let X be a meanvable space. Definition: A function &: X -> & is said to be simple if its range & (x) is a finite set. Suppose & is sninple and s(X) = Edy --- , ang with di's distinct. Let Ai= s' (di), i=1,...,n. Then Ay..., An are pairwise disjont sie. Ay (Aj=\$ if i + j. Note that 1= 2 x XA. Councily, any function & which can be represented as above must take only a finite number of values and is therefore simple. Theorem : Let f: X -> TO, 00] be a mille function. There exist simple m'ble functions on neW, such that 0=\$1=\$2 = = f (a)

Lecture 3

In (x) -> f(x) as n -> for every XEX. (b)Proof: For each NEN, define Q.: [0, ∞] → [0, ∞) note this! as in duded as follows:





There is Let per be a specific measure on
$$(X,M)$$
.
(a) $\mu(\phi) = 0$.
(b) $\exists A_{1},...,A_{n}$ are pairwrite disjoint m'lde exts then
 $\mu(\bigvee_{i=1}^{n}A_{i}) = \sum_{i=1}^{n}\mu(A_{i})$
(c) $A \subseteq R \Longrightarrow \mu(A) \leq \mu(B)$, $A_{i} B \in M$.
(d) $\exists f A_{n} \in M$, $n \in \mathbb{N}$, with $A_{1} \subset A_{2} \subset ... \subset A_{n} \subset A_{m+1} \subset ...$
and $A = \bigcup_{i=1}^{n}A_{n}$, then
 $\mu(A) = \lim_{n \to \infty} \mu(A_{i})$. M.
(e) $\exists f A_{n} \in M$, $n \in \mathbb{N}$, with $A_{i} \supset A_{2} \supset ... \supset A_{n} \supset A_{n+1} \supset ...$
and $A = \bigcap_{i=1}^{n}A_{n}$, and $if \mu(A_{i}) \subset \infty$, then
 $\mu(A) = \lim_{n \to \infty} \mu(A_{i})$
(a) Let $A \in M$ be set. $\mu(A) \subset \infty$. Let $A_{i} = A$ and $A_{n} = \phi$ for
 $n \geqslant 2$. Apply constable additivity to get
 $\mu(A) = \mu(A) + \underbrace{\sum}_{n \geq 2} \mu(\phi)$
 $\exists follows that \mu(\phi) = D$
(b) Take Anex = ϕ for $E \geqslant 1$ apply constable additivity
 $f A_{i}, A_{2},...,A_{n}, A_{n+1}, A_{n+2},...$ and $m = \phi$ for
 ϕ with $A \ge A \sqcup (B-A)$ where \sqcup denote disjoint
tunion, there fore $\mu(B) \supseteq \mu(A) + \mu(B-A)$ and this prese
 $\mu(B) \geqslant \mu(A)$
(d) Let $B \models A \sqcup (B-A)$ where \amalg but $B = An \frown A_{n-1}$.
Then $\{B_{n}\}$ is a sequence f painwrise dispont

sets. Note that
$$A = \bigcup_{n=1}^{\infty} B_n$$
. Two by consider additivity
 $\mu(A) = \sum_{k=1}^{\infty} \mu(B_k) = \lim_{n \to \infty} \sum_{k=1}^{\infty} \mu(B_k)$ (i)
Norse $B_1 \cup B_2 \cup \dots \cup B_n = A_n$, and hence by (b)
 $\Sigma_{1 \times n}^{\infty} \mu(B_k) = \mu(A_n)$. Substituting in (1) we get
the answer.
(e) Let $B_n = A_1 - A_n$. Then
 $\phi = B_1 \subset B_2 \subset \dots \subset B_n \subset B_{n-1} \subset \dots$
and hence by (c)
 $\mu(\bigcup_{n=1}^{\infty} B_n) = \lim_{n \to \infty} \mu(B_n)$ (c)
Norse $\bigcup_{n=1}^{\infty} B_n = A_1 - \bigcap_{n \to \infty} A_n$ and hence
 $\mu(\bigcup_{n=1}^{\infty} B_n) = \mu(A_1) - \mu(\bigcap_{n=1}^{\infty} A_n)$.
Thus by (x)
 $\mu(A_1) - \mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(A_n)$.
Since $\mu(A) \subset \infty$, the result follows.
 $q.ed$.
15.1.
 $\mu(A) = \omega$ (d) $P(N)$ consider the meanse
 $\mu(A) = 0$ A is infimite $e_{\mu(A)} = \operatorname{continenting} q A dimension
 $\mu(A_1) = \omega$. At is infimite $e_{\mu(A)} = \operatorname{continenting} q A dimension
 $\mu(A_1) = \phi$. At is therefore clean that $\mu(\bigcap_{n=1}^{\infty} A_n) \in \mathbb{R}$.$$