LECTURE 24

Date of Lecture: November 10, 2018

All vector spaces are over C. As before m is the measure on the Lebesgue
o-algebra on R given by
_ Lebesgue measure

B Var

/abf(a:)d:v

will denote the integral of a measurable function f on R! with respect to the
Lebesgue measure over (a,b). Similarly f;fdm = f: flx)dm(x) = f(a p £ dm.
Moreover,

and

LP:= LP(m) (1 <p<o0),

and for a measurable function f on R

IIfI,,:{/ Iflpdm}-

1. Fourier Inversion

1.1. Recap from last lecture. Last lecture (Lecture 23 on Nov 6) we proved the
following two results.

Theorem 1.1.1. For any function f on R, and any real number y, let fy(z) =
flz—y). If f € LP, then the mapping

Yy fy
s a uniformly continuous map from R to LP.

Theorem 1.1.2. [the Riemann-Lebesgue Theorem]Let f € L'. Then fe Co(R)
and [ flloc < [I£1]x-

1.2. The functions H), and h),. For A > 0 let

(1.2.1) Hy(t)=e Mt (teR)
and
(1.2.2) ha(z) = /_ Hy(t)e'™ dm(t) (x € R).

It is easy to see that

(1.2.3) ha(z) = \/Zviﬁ

Which is either taking values in [0, 0o] or is integrable with respect to the Lebesgue measure
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whence,
(1.2.4) / " ha(z) dm(z) =
Proposition 1.2.5. If f € L, then
Fxh)( / Hy(t) f(t)e™ dmi(t) (x € R).
Proof.

*h)\ / fCC— h)\ )dm()

-/ REE y>{ / HA(Be dm(ﬂ} dm(y)

= /Oo /m f(z —y)Hy (t)eit(yfx)ez‘tr dm(y) dm(t) (Fubini)

= /oo HA(t)e”"”{/w fla —y)e ew) dm(y)} dm(t)

/ Hy(t) F(£)e"™ dmft).

Theorem 1.2.6. If g € L and g is continuous at a point x, then
lim (g * hy)(z) = g(x).
A—0

Proof.

(9% ha)(z) — g(z) = / " (gle - y) - g(@))ha(y) dml(y)

—oo

- /°° (9(@—y) — g(x))%fh (i) dm(y)

—oo

_ / T (gl = M) — () (w) dm(w).

—oo

The absolute value of the last integrand is dominated by 2|/g||_, h1(u), and this is
in L', which means DCT applies and we can take the limit through the integral
sign as A tends to 0. The result follows immediately. [l

Theorem 1.2.7. Ifp € [1, 00) and f € LP, then
li ha — =
tim [1f + oy — £,
Proof. We claim that hy € L? for every g € [1,00]. First note that if

E={x|hx(z) > 1},
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then as hy € L', m(E) < co. Let F = {z | hy(z) <1
so that hy € L>. For 1 < ¢ < oo we have h{(z) < hy(

/W hi(x)dm(x):/Fhf‘\der/Ehidm

< / B dm + | ha]|%.m(E) < oo,
P

< 1}. Now [[hy]l, = 1/X < o0,
hy(z

) for x € F', whence

proving the claim. This means f  hy(z) is defined everywhere.? Now,

(f * o) (&) — f(2) = / T (fla— ) — F@)haly) dmy).

Since hy dm gives a probability measure and since s — sP is convex, by Jensen’s
inequality we get

) | - @] < [ |- 0 - @) i) ),

Integrating both sides and applying Fubini we get

If % hy— FIE < / Ty = PR () dmy).

If g is the function g(y) = | f-, — f[|}, then by Theorem 1.1.1, g is continuous on
R. Moreover, the integral on the right side of (xx) becomes g * hy(0), whence by
Theorem 1.2.6, the right side of (x*) converges to g(0) = 0 as A — 0. O

Theorem 1.2.8. [The Fourier Inversion Theorem| Suppose f and f are in L', and

/f el dm(t)  (z €R).

Then g € Co(R) and f(z) = g(z) a.e.
Proof. By Proposition 1.2.5
1) Fem)@ = [~ moF e dm
for x € R. Since
EROVOES IO}

and since by our hypothesis f € L', DCT applies. Now limy_,o Hx(t) = 1 for every
t € R as is easily checked from (1.2.1). So applying DCT, and Theorem 1.2.6 we
get that the right side of (f) converges to g(z) for every x as A — 0. On the other
hand, by Theorem 1.2.7 and the fact that if {P,} is a sequence in LP converging
in L? to P, then there is a subsequence {P,,} which converges pointwise almost
everywhere to P (see [Lecture 12, p.5]) we see that there is a sequence {)\,} such
that A\, — 0 and

) lim (f +hy)(x) = f(a) auc.

n—o0

2Let g be the exponent conjugate to p. Let ¢(y) = f(—y). Then ¢ € LP, and hence so does
¢z Since (f *hx(z) = [ (bm(y)hx( )dm(y), and hy € L%, we see that (f *hy)(x) is defined for

every x.



We have shown that the right side (1) converges to g(x), which means by f(x) =
g(x) for almost every x by (1). Finally, by definition, g = ¢ where ¢(z) = f(—=x). It
follows that g € Cy(R) by the Riemann-Lebesgue Theorem, i.e. Theorem 1.1.2. O

Corollary 1.2.9. [The Uniqueness Theorem] If f € L' and f(t)=0 for all t € R,
then f(x) =0 a.e.

Proof. Since f: 0, therefore fe L' and Theorem 1.2.8 applies. O

2. The Plancheral Theorem
2.1. Fourier transform on L' N L2. Suppose f € L' N L?. We will show that

(2.1.1) fer?
and that
(2.1.2) 1f1l2 = Il.f]l2-
Let B
flx) = f(==)
for z € R and
(2.1.3) g=fxf.
We also know from the previous lecture that f: ? and hence
(2.1.4) g=1f
Now

gur:/wﬂx—wﬂ—wmmw

:/“f@+@ﬁammw
- / )T @) dm(y),
giving
(2.1.5) g(x) = <ff:r7f> (x € R)’

We know from Theorem 1.1.1 that x — f_, is a continuous map from R to L?, and
we know that h — (h, f) is a continuous map from L? to C. It follows from (2.1.5)
that g is continuous. Moreover, applying Cauchy-Schwarz to (2.1.5), we see that

lg(x)* < [I£13,

whence g is bounded. Theorem 1.2.6 therefore applies to g for every x € R and we
get
1715 = 9(0) = lim (g + 7.\)(0) (Theorem 1.2.6)
—
(2.1.6)

—lim | H\()§(t)dm(t) (Theorem 1.2.5).
A—0 .

On the other hand, by (2.1.4) we have

HA()3(t) = HA(8)| F ()2
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which is a positive and increases to f(t)|
have

et [T m@30 e = [ FOF o = 1713

—oo

2 as A = 0, so that MCT applies and we

Thus (2.1.6) and (2.1.7) establish (2.1.2) for f € L' N L?. This also shows that
f e L2 for every f € L' N L2.

Next, we wish to extend the Fourier transform from L' N L? to L? in a surjective
norm-preserving way. More precisely let Y C L? be the collection

Y ={geclL? |g:f, for some f € L' N L?}.
Let
¢:L'NL*>Y
be the map
®(f) = .
® is a surjective isometry. Let X be the closure of Y in L2. Now, L' N L? is dense
in L2. Since @ is a continuous linear transformation, it is uniformly continuous on

L' N L? and hence extends to a map (necessarily a linear transformation as is easy
to check via limits)
d: [ - X

and according to [Lecture17, p.4, Lemma1.5.1], ® is a surjective isometry from
L? to X. We claim that X = L?. This is equivalent to claiming that Y is dense
in L?. Since L? is a Hilbert space, this amounts to showing that if w € Y+
then w = 0. Consider the collection of functions {¢x . | @ € R, A > 0}, where
Oxa(x) =€ Hy(z). Then @y o € L' N L? and 3y o(t) = ha(a — t), which means
t+ hy(a—t) isin Y. Now suppose w € Y+ C L%. then

oy () = / " bl — () dm(t) = 0,

Letting A — 0 and using Theorem 1.2.6 we get that wW(a) = 0 for every a € R,
which means w = 0. Thus Y is dense in L?, and we therefore have a surjective
isometry

o: L2 =~ [?
which on L' N L2 sends f to f.

We have now proven parts (a), (b), and (c) of the following theorem (see [R,
p. 186, Thm. 9.1.3])

Theorem 2.1.8. One can associate to each f € L* a function ]?E L? so that the
following properties hold:

(a) If f € L' N L? then f is the previously defined Fourier transform of f.

(b) For evry f € L2, || fllz = | fll2-

(c) The mapping f + f is a Hilbert space isomorphism of L? onto L?.

(d) The following symmetric relation exists between f and f: If

wa(t) = /_A f(x)e ™ dm(z) and Ya(x) = /_A f(t)ei’”t dm(t),

then ||@a — f||2 — 0 and ||a — fll2 — 0 as A — oc.
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Proof. We only have to prove (b) having already proved the other parts. Now
1fX_aa — fllz —> 0 as A — oo. By definition, p4 = (fX[—A,A])/\ and hence

”f - (PAHQ = ||<f - fX[_A,A])A||2 = ”f - fX[_A,A]H2 —0
as A — oc.
The same proof works for the other half of (d). a/
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