LECTURE 24

Date of Lecture: November 10, 2018
All vector spaces are over \mathbb{C}. As before m is the measure on the Lebesgue σ-algebra on \mathbb{R} given by

$$
m=\frac{\text { Lebesgue measure }}{\sqrt{2 \pi}}
$$

and

$$
\int_{a}^{b} f(x) d x
$$

will denote the integral of a measurable function f on \mathbb{R}^{1} with respect to the Lebesgue measure over (a, b). Similarly $\int_{a}^{b} f d m=\int_{a}^{b} f(x) d m(x)=\int_{(a, b)} f d m$. Moreover,

$$
L^{p}:=L^{p}(m) \quad(1 \leq p \leq \infty)
$$

and for a measurable function f on \mathbb{R}

$$
\|f\|_{p}:=\left\{\int_{-\infty}^{\infty}|f|^{p} d m\right\}^{\frac{1}{p}}
$$

1. Fourier Inversion

1.1. Recap from last lecture. Last lecture (Lecture 23 on Nov 6) we proved the following two results.

Theorem 1.1.1. For any function f on \mathbb{R}, and any real number y, let $f_{y}(x)=$ $f(x-y)$. If $f \in L^{p}$, then the mapping

$$
y \mapsto f_{y}
$$

is a uniformly continuous map from \mathbb{R} to L^{p}.
Theorem 1.1.2. [the Riemann-Lebesgue Theorem] Let $f \in L^{1}$. Then $\widehat{f} \in C_{0}(\mathbb{R})$ and $\|\widehat{f}\|_{\infty} \leq\|f\|_{1}$.
1.2. The functions H_{λ} and h_{λ}. For $\lambda>0$ let

$$
\begin{equation*}
H_{\lambda}(t)=e^{-\lambda|t|} \quad(t \in \mathbb{R}) \tag{1.2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{\lambda}(x)=\int_{-\infty}^{\infty} H_{\lambda}(t) e^{i t x} d m(t) \quad(x \in \mathbb{R}) \tag{1.2.2}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
h_{\lambda}(x)=\sqrt{\frac{2}{\pi}} \frac{\lambda}{\lambda^{2}+x^{2}} \tag{1.2.3}
\end{equation*}
$$

[^0]whence,
\[

$$
\begin{equation*}
\int_{-\infty}^{\infty} h_{\lambda}(x) d m(x)=1 \tag{1.2.4}
\end{equation*}
$$

\]

Proposition 1.2.5. If $f \in L^{1}$, then

$$
\left(f * h_{\lambda}\right)(x)=\int_{-\infty}^{\infty} H_{\lambda}(t) \widehat{f}(t) e^{i t x} d m(t) \quad(x \in \mathbb{R})
$$

Proof.

$$
\begin{align*}
\left(f * h_{\lambda}\right)(x) & =\int_{-\infty}^{\infty} f(x-y) h_{\lambda}(y) d m(y) \\
& =\int_{-\infty}^{\infty} f(x-y)\left\{\int_{-\infty}^{\infty} H_{\lambda}(t) e^{i t y} d m(t)\right\} d m(y) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-y) H_{\lambda}(t) e^{i t(y-x)} e^{i t x} d m(y) d m(t) \tag{Fubini}\\
& =\int_{-\infty}^{\infty} H_{\lambda}(t) e^{i t x}\left\{\int_{-\infty}^{\infty} f(x-y) e^{-i t(x-y)} d m(y)\right\} d m(t) \\
& =\int_{-\infty}^{\infty} H_{\lambda}(t) \widehat{f}(t) e^{i t x} d m(t)
\end{align*}
$$

Theorem 1.2.6. If $g \in L^{\infty}$ and g is continuous at a point x, then

$$
\lim _{\lambda \rightarrow 0}\left(g * h_{\lambda}\right)(x)=g(x)
$$

Proof.

$$
\begin{aligned}
\left(g * h_{\lambda}\right)(x)-g(x) & =\int_{-\infty}^{\infty}(g(x-y)-g(x)) h_{\lambda}(y) d m(y) \\
& =\int_{-\infty}^{\infty}(g(x-y)-g(x)) \frac{1}{\lambda} h_{1}\left(\frac{y}{\lambda}\right) d m(y) \\
& =\int_{-\infty}^{\infty}(g(x-\lambda u)-g(x)) h_{1}(u) d m(u)
\end{aligned}
$$

The absolute value of the last integrand is dominated by $2\|g\|_{\infty} h_{1}(u)$, and this is in L^{1}, which means DCT applies and we can take the limit through the integral sign as λ tends to 0 . The result follows immediately.

Theorem 1.2.7. If $p \in[1, \infty)$ and $f \in L^{p}$, then

$$
\lim _{\lambda \rightarrow 0}\left\|f * h_{\lambda}-f\right\|_{p}=0
$$

Proof. We claim that $h_{\lambda} \in L^{q}$ for every $q \in[1, \infty]$. First note that if

$$
E=\left\{x \mid h_{\lambda}(x)>1\right\}
$$

then as $h_{\lambda} \in L^{1}, m(E)<\infty$. Let $F=\left\{x \mid h_{\lambda}(x) \leq 1\right\}$. Now $\left\|h_{\lambda}\right\|_{\infty}=1 / \lambda<\infty$, so that $h_{\lambda} \in L^{\infty}$. For $1 \leq q<\infty$ we have $h_{\lambda}^{q}(x) \leq h_{\lambda}(x)$ for $x \in F$, whence

$$
\begin{aligned}
\int_{-\infty}^{\infty} h_{\lambda}^{q}(x) d m(x) & =\int_{F} h_{\lambda}^{q} d m+\int_{E} h_{\lambda}^{q} d m \\
& \leq \int_{F} h_{\lambda} d m+\left\|h_{\lambda}\right\|_{\infty}^{q} m(E)<\infty
\end{aligned}
$$

proving the claim. This means $f * h_{\lambda}(x)$ is defined everywhere. ${ }^{2}$ Now,

$$
\left(f * h_{\lambda}\right)(x)-f(x)=\int_{-\infty}^{\infty}(f(x-y)-f(x)) h_{\lambda}(y) d m(y)
$$

Since $h_{\lambda} d m$ gives a probability measure and since $s \mapsto s^{p}$ is convex, by Jensen's inequality we get

$$
\begin{equation*}
\left|\left(f * h_{\lambda}\right)(x)-f(x)\right|^{p} \leq \int_{-\infty}^{\infty}|f(x-y)-f(x)|^{p} h_{\lambda}(y) d m(y) \tag{**}
\end{equation*}
$$

Integrating both sides and applying Fubini we get

$$
\left\|f * h_{\lambda}-f\right\|_{p}^{p} \leq \int_{-\infty}^{\infty}\left\|f_{y}-f\right\|_{p}^{p} h_{\lambda}(y) d m(y)
$$

If g is the function $g(y)=\left\|f_{-y}-f\right\|_{p}^{p}$, then by Theorem 1.1.1, g is continuous on \mathbb{R}. Moreover, the integral on the right side of $(* *)$ becomes $g * h_{\lambda}(0)$, whence by Theorem 1.2.6, the right side of $(* *)$ converges to $g(0)=0$ as $\lambda \rightarrow 0$.

Theorem 1.2.8. [The Fourier Inversion Theorem] Suppose f and \widehat{f} are in L^{1}, and

$$
g(x)=\int_{-\infty}^{\infty} \widehat{f}(t) e^{i t x} d m(t) \quad(x \in \mathbb{R}) .
$$

Then $g \in C_{0}(\mathbb{R})$ and $f(x)=g(x)$ a.e.
Proof. By Proposition 1.2.5

$$
\left(f * h_{\lambda}\right)(x)=\int_{-\infty}^{\infty} H_{\lambda}(t) \widehat{f}(t) e^{i t x} d m(t)
$$

for $x \in \mathbb{R}$. Since

$$
\left|H_{\lambda}(t) \widehat{f}(t) e^{i t x}\right| \leq \mid \widehat{f}(t)
$$

and since by our hypothesis $\widehat{f} \in L^{1}$, DCT applies. Now $\lim _{\lambda \rightarrow 0} H_{\lambda}(t)=1$ for every $t \in \mathbb{R}$ as is easily checked from (1.2.1). So applying DCT, and Theorem 1.2 .6 we get that the right side of (\dagger) converges to $g(x)$ for every x as $\lambda \rightarrow 0$. On the other hand, by Theorem 1.2.7 and the fact that if $\left\{P_{n}\right\}$ is a sequence in L^{p} converging in L^{p} to P, then there is a subsequence $\left\{P_{n_{k}}\right\}$ which converges pointwise almost everywhere to P (see [Lecture 12, p.5]) we see that there is a sequence $\left\{\lambda_{n}\right\}$ such that $\lambda_{n} \rightarrow 0$ and

$$
\lim _{n \rightarrow \infty}\left(f * h_{\lambda}\right)(x)=f(x) \text { a.e. }
$$

[^1]We have shown that the right side (\dagger) converges to $g(x)$, which means by $f(x)=$ $g(x)$ for almost every x by (\ddagger). Finally, by definition, $g=\widehat{\psi}$ where $\psi(x)=\widehat{f}(-x)$. It follows that $g \in C_{0}(\mathbb{R})$ by the Riemann-Lebesgue Theorem, i.e. Theorem 1.1.2.

Corollary 1.2.9. [The Uniqueness Theorem] If $f \in L^{1}$ and $\widehat{f}(t)=0$ for all $t \in \mathbb{R}$, then $f(x)=0$ a.e.
Proof. Since $\widehat{f}=0$, therefore $\widehat{f} \in L^{1}$ and Theorem 1.2.8 applies.

2. The Plancheral Theorem

2.1. Fourier transform on $L^{1} \cap L^{2}$. Suppose $f \in L^{1} \cap L^{2}$. We will show that

$$
\begin{equation*}
\widehat{f} \in L^{2} \tag{2.1.1}
\end{equation*}
$$

and that

$$
\begin{equation*}
\|f\|_{2}=\|\widehat{f}\|_{2} \tag{2.1.2}
\end{equation*}
$$

Let

$$
\widetilde{f}(x)=\overline{f(-x)}
$$

for $x \in \mathbb{R}$ and

$$
\begin{equation*}
g=f * \widetilde{f} \tag{2.1.3}
\end{equation*}
$$

We also know from the previous lecture that $\widehat{\widetilde{f}}=\overline{\widehat{f}}$. and hence

$$
\begin{equation*}
\widehat{g}=|\widehat{f}|^{2} \tag{2.1.4}
\end{equation*}
$$

Now

$$
\begin{aligned}
g(x) & =\int_{-\infty}^{\infty} f(x-y) \overline{f(-y)} d m(y) \\
& =\int_{-\infty}^{\infty} f(y+x) \overline{f(y)} d m(y) \\
& =\int_{-\infty}^{\infty} f_{-x}(y) \overline{f(y)} d m(y)
\end{aligned}
$$

giving

$$
\begin{equation*}
g(x)=\left\langle f_{-x}, f\right\rangle \quad(x \in \mathbb{R}) \tag{2.1.5}
\end{equation*}
$$

We know from Theorem 1.1.1 that $x \mapsto f_{-x}$ is a continuous map from \mathbb{R} to L^{2}, and we know that $h \mapsto\langle h, f\rangle$ is a continuous map from L^{2} to \mathbb{C}. It follows from (2.1.5) that g is continuous. Moreover, applying Cauchy-Schwarz to (2.1.5), we see that

$$
|g(x)|^{2} \leq\|f\|_{2}^{2}
$$

whence g is bounded. Theorem 1.2.6 therefore applies to g for every $x \in \mathbb{R}$ and we get

$$
\begin{array}{rlr}
\|f\|_{2}^{2}=g(0) & =\lim _{\lambda \rightarrow 0}\left(g * h_{\lambda}\right)(0) \quad \text { (Theorem 1.2.6) } \\
& =\lim _{\lambda \rightarrow 0} \int_{-\infty}^{\infty} H_{\lambda}(t) \widehat{g}(t) d m(t) \quad \text { (Theorem 1.2.5). } \tag{2.1.6}
\end{array}
$$

On the other hand, by (2.1.4) we have

$$
H_{\lambda}(t) \widehat{g}(t)=H_{\lambda}(t)|\widehat{f}(t)|^{2}
$$

which is a positive and increases to $\left.\widehat{f}(t)\right|^{2}$ as $\lambda \rightarrow 0$, so that MCT applies and we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \int_{-\infty}^{\infty} H_{\lambda}(t) \widehat{g}(t) d m(t)=\int_{-\infty}^{\infty}|\widehat{f}(t)|^{2} d m(t)=\|\widehat{f}\|_{2}^{2} \tag{2.1.7}
\end{equation*}
$$

Thus (2.1.6) and (2.1.7) establish (2.1.2) for $f \in L^{1} \cap L^{2}$. This also shows that $\widehat{f} \in L^{2}$ for every $f \in L^{1} \cap L^{2}$.

Next, we wish to extend the Fourier transform from $L^{1} \cap L^{2}$ to L^{2} in a surjective norm-preserving way. More precisely let $Y \subset L^{2}$ be the collection

$$
Y=\left\{g \in L^{2} \mid g=\widehat{f}, \text { for some } f \in L^{1} \cap L^{2}\right\}
$$

Let

$$
\Phi: L^{1} \cap L^{2} \rightarrow Y
$$

be the map

$$
\Phi(f)=\widehat{f}
$$

Φ is a surjective isometry. Let X be the closure of Y in L^{2}. Now, $L^{1} \cap L^{2}$ is dense in L^{2}. Since Φ is a continuous linear transformation, it is uniformly continuous on $L^{1} \cap L^{2}$ and hence extends to a map (necessarily a linear transformation as is easy to check via limits)

$$
\Phi: L^{2} \rightarrow X
$$

and according to [Lecture 17, p.4, Lemma 1.5.1], Φ is a surjective isometry from L^{2} to X. We claim that $X=L^{2}$. This is equivalent to claiming that Y is dense in L^{2}. Since L^{2} is a Hilbert space, this amounts to showing that if $w \in Y^{\perp}$ then $w=0$. Consider the collection of functions $\left\{\varphi_{\lambda, \alpha} \mid \alpha \in \mathbb{R}, \lambda>0\right\}$, where $\varphi_{\lambda, \alpha}(x)=e^{i \alpha x} H_{\lambda}(x)$. Then $\varphi_{\lambda, \alpha} \in L^{1} \cap L^{2}$ and $\widehat{\varphi}_{\lambda, \alpha}(t)=h_{\lambda}(\alpha-t)$, which means $t \mapsto h_{\lambda}(\alpha-t)$ is in Y. Now suppose $w \in Y^{\perp} \subset L^{2}$. then

$$
h_{\lambda} * \bar{w}(\alpha)=\int_{-\infty}^{\infty} h_{\lambda}(\alpha-t) \bar{w}(t) d m(t)=0
$$

Letting $\lambda \rightarrow 0$ and using Theorem 1.2.6 we get that $\bar{w}(\alpha)=0$ for every $\alpha \in \mathbb{R}$, which means $w=0$. Thus Y is dense in L^{2}, and we therefore have a surjective isometry

$$
\Phi: L^{2} \xrightarrow{\sim} L^{2}
$$

which on $L^{1} \cap L^{2}$ sends f to \widehat{f}.
We have now proven parts (a), (b), and (c) of the following theorem (see [R, p. 186, Thm. 9.1.3])

Theorem 2.1.8. One can associate to each $f \in L^{2}$ a function $\widehat{f} \in L^{2}$ so that the following properties hold:
(a) If $f \in L^{1} \cap L^{2}$ then \widehat{f} is the previously defined Fourier transform of f.
(b) For evry $f \in L^{2},\|\widehat{f}\|_{2}=\|f\|_{2}$.
(c) The mapping $f \mapsto \widehat{f}$ is a Hilbert space isomorphism of L^{2} onto L^{2}.
(d) The following symmetric relation exists between f and \widehat{f} : If

$$
\begin{aligned}
& \qquad \varphi_{A}(t)=\int_{-A}^{A} f(x) e^{-i x t} d m(x) \text { and } \psi_{A}(x)=\int_{-A}^{A} \widehat{f}(t) e^{i x t} d m(t), \\
& \text { then }\left\|\varphi_{A}-\widehat{f}\right\|_{2} \longrightarrow 0 \text { and }\left\|\psi_{A}-f\right\|_{2} \longrightarrow 0 \text { as } A \longrightarrow \infty
\end{aligned}
$$

Proof. We only have to prove (b) having already proved the other parts. Now $\left\|f \chi_{[-A, A]}-f\right\|_{2} \longrightarrow 0$ as $A \longrightarrow \infty$. By definition, $\varphi_{A}=\left(f \chi_{[-A, A]}\right)^{\wedge}$ and hence

$$
\left\|\widehat{f}-\varphi_{A}\right\|_{2}=\left\|\left(f-f \chi_{[-A, A]}\right)^{\wedge}\right\|_{2}=\left\|f-f \chi_{[-A, A]}\right\|_{2} \longrightarrow 0
$$

as $A \rightarrow \infty$.
The same proof works for the other half of (d).

References

[R] W. Rudin, Real and Complex Analysis, (Third Edition), McGraw-Hill, New York, 1987.

[^0]: ${ }^{1}$ Which is either taking values in $[0, \infty]$ or is integrable with respect to the Lebesgue measure

[^1]: ${ }^{2}$ Let q be the exponent conjugate to p. Let $\phi(y)=f(-y)$. Then $\phi \in \mathrm{E}^{p}$, and hence so does ϕ_{x}. Since $\left(f * h_{\lambda}(x)=\int_{-\infty}^{\infty} \phi_{x}(y) h_{\lambda}(y) d m(y)\right.$, and $h_{\lambda} \in L^{q}$, we see that $\left(f * h_{\lambda}\right)(x)$ is defined for every x.

