
LECTURE 24

Date of Lecture: November 10, 2018

All vector spaces are over C. As before m is the measure on the Lebesgue
σ-algebra on R given by

m =
Lebesgue measure√

2π
and ∫ b

a

f(x) dx

will denote the integral of a measurable function f on R1 with respect to the

Lebesgue measure over (a, b). Similarly
∫ b
a
f dm =

∫ b
a
f(x) dm(x) =

∫
(a,b)

f dm.

Moreover,

Lp := Lp(m) (1 ≤ p ≤ ∞),

and for a measurable function f on R

‖f‖p :=

{∫ ∞
−∞
|f |p dm

} 1
p

.

1. Fourier Inversion

1.1. Recap from last lecture. Last lecture (Lecture 23 on Nov 6) we proved the
following two results.

Theorem 1.1.1. For any function f on R, and any real number y, let fy(x) =
f(x− y). If f ∈ Lp, then the mapping

y 7→ fy

is a uniformly continuous map from R to Lp.

Theorem 1.1.2. [the Riemann-Lebesgue Theorem]Let f ∈ L1. Then f̂ ∈ C0(R)

and ‖f̂‖∞ ≤ ‖f‖1.

1.2. The functions Hλ and hλ. For λ > 0 let

(1.2.1) Hλ(t) = e−λ|t| (t ∈ R)

and

(1.2.2) hλ(x) =

∫ ∞
−∞

Hλ(t)eitx dm(t) (x ∈ R).

It is easy to see that

(1.2.3) hλ(x) =

√
2

π

λ

λ2 + x2

1Which is either taking values in [0,∞] or is integrable with respect to the Lebesgue measure
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whence,

(1.2.4)

∫ ∞
−∞

hλ(x) dm(x) = 1.

Proposition 1.2.5. If f ∈ L1, then

(f ∗ hλ)(x) =

∫
∞

−∞

Hλ(t)f̂(t)eitx dm(t) (x ∈ R).

Proof.

(f ∗ hλ)(x) =

∫
∞

−∞

f(x− y)hλ(y) dm(y)

=

∫
∞

−∞

f(x− y)

{∫
∞

−∞

Hλ(t)eity dm(t)

}
dm(y)

=

∫
∞

−∞

∫
∞

−∞

f(x− y)Hλ(t)eit(y−x)eitx dm(y) dm(t) (Fubini)

=

∫
∞

−∞

Hλ(t)eitx

{∫
∞

−∞

f(x− y)e−it(x−y) dm(y)

}
dm(t)

=

∫
∞

−∞

Hλ(t)f̂(t)eitx dm(t).

�

Theorem 1.2.6. If g ∈ L∞ and g is continuous at a point x, then

lim
λ→0

(g ∗ hλ)(x) = g(x).

Proof.

(g ∗ hλ)(x)− g(x) =

∫
∞

−∞

(g(x− y)− g(x))hλ(y) dm(y)

=

∫
∞

−∞

(g(x− y)− g(x))
1

λ
h1

(
y

λ

)
dm(y)

=

∫
∞

−∞

(g(x− λu)− g(x))h1(u) dm(u).

The absolute value of the last integrand is dominated by 2‖g‖∞h1(u), and this is
in L1, which means DCT applies and we can take the limit through the integral
sign as λ tends to 0. The result follows immediately. �

Theorem 1.2.7. If p ∈ [1, ∞) and f ∈ Lp, then

lim
λ→0
‖f ∗ hλ − f‖p = 0.

Proof. We claim that hλ ∈ Lq for every q ∈ [1,∞]. First note that if

E = {x | hλ(x) > 1},
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then as hλ ∈ L1, m(E) < ∞. Let F = {x | hλ(x) ≤ 1}. Now ‖hλ‖∞ = 1/λ < ∞,
so that hλ ∈ L∞. For 1 ≤ q <∞ we have hqλ(x) ≤ hλ(x) for x ∈ F , whence∫

∞

−∞

hqλ(x) dm(x) =

∫
F

hqλ dm+

∫
E

hqλ dm

≤
∫
F

hλ dm+ ‖hλ‖q∞m(E) <∞,

proving the claim. This means f ∗ hλ(x) is defined everywhere.2 Now,

(f ∗ hλ)(x)− f(x) =

∫
∞

−∞

(f(x− y)− f(x))hλ(y) dm(y).

Since hλ dm gives a probability measure and since s 7→ sp is convex, by Jensen’s
inequality we get

(∗∗)
∣∣∣(f ∗ hλ)(x)− f(x)

∣∣∣p ≤ ∫ ∞
−∞

∣∣∣f(x− y)− f(x)
∣∣∣phλ(y) dm(y).

Integrating both sides and applying Fubini we get

‖f ∗ hλ − f‖pp ≤
∫
∞

−∞

‖fy − f‖pphλ(y) dm(y).

If g is the function g(y) = ‖f−y − f‖pp, then by Theorem 1.1.1, g is continuous on
R. Moreover, the integral on the right side of (∗∗) becomes g ∗ hλ(0), whence by
Theorem 1.2.6, the right side of (∗∗) converges to g(0) = 0 as λ→ 0. �

Theorem 1.2.8. [The Fourier Inversion Theorem] Suppose f and f̂ are in L1, and

g(x) =

∫
∞

−∞

f̂(t)eitx dm(t) (x ∈ R).

Then g ∈ C0(R) and f(x) = g(x) a.e.

Proof. By Proposition 1.2.5

(†) (f ∗ hλ)(x) =

∫
∞

−∞

Hλ(t)f̂(t)eitx dm(t)

for x ∈ R. Since ∣∣∣Hλ(t)f̂(t)eitx
∣∣∣ ≤ |f̂(t),

and since by our hypothesis f̂ ∈ L1, DCT applies. Now limλ→0Hλ(t) = 1 for every
t ∈ R as is easily checked from (1.2.1). So applying DCT, and Theorem 1.2.6 we
get that the right side of (†) converges to g(x) for every x as λ→ 0. On the other
hand, by Theorem 1.2.7 and the fact that if {Pn} is a sequence in Lp converging
in Lp to P , then there is a subsequence {Pnk

} which converges pointwise almost
everywhere to P (see [Lecture 12, p.5]) we see that there is a sequence {λn} such
that λn → 0 and

(‡) lim
n→∞

(f ∗ hλ)(x) = f(x) a.e.

2Let q be the exponent conjugate to p. Let φ(y) = f(−y). Then φ ∈  Lp, and hence so does
φx. Since (f ∗ hλ(x) =

∫∞
−∞

φx(y)hλ(y)dm(y), and hλ ∈ Lq , we see that (f ∗ hλ)(x) is defined for

every x.
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We have shown that the right side (†) converges to g(x), which means by f(x) =

g(x) for almost every x by (‡). Finally, by definition, g = ψ̂ where ψ(x) = f̂(−x). It
follows that g ∈ C0(R) by the Riemann-Lebesgue Theorem, i.e. Theorem 1.1.2. �

Corollary 1.2.9. [The Uniqueness Theorem] If f ∈ L1 and f̂(t) = 0 for all t ∈ R,
then f(x) = 0 a.e.

Proof. Since f̂ = 0, therefore f̂ ∈ L1 and Theorem 1.2.8 applies. �

2. The Plancheral Theorem

2.1. Fourier transform on L1 ∩ L2. Suppose f ∈ L1 ∩ L2. We will show that

(2.1.1) f̂ ∈ L2

and that

(2.1.2) ‖f‖2 = ‖f̂‖2.
Let

f̃(x) = f(−x)

for x ∈ R and

(2.1.3) g = f ∗ f̃ .

We also know from the previous lecture that
̂̃
f = f̂ . and hence

(2.1.4) ĝ = |f̂ |2

Now

g(x) =

∫
∞

−∞

f(x− y)f(−y) dm(y)

=

∫
∞

−∞

f(y + x)f(y) dm(y)

=

∫
∞

−∞

f−x(y)f(y) dm(y),

giving

(2.1.5) g(x) = 〈f−x, f〉 (x ∈ R).

We know from Theorem 1.1.1 that x 7→ f−x is a continuous map from R to L2, and
we know that h 7→ 〈h, f〉 is a continuous map from L2 to C. It follows from (2.1.5)
that g is continuous. Moreover, applying Cauchy-Schwarz to (2.1.5), we see that

|g(x)|2 ≤ ‖f‖22,
whence g is bounded. Theorem 1.2.6 therefore applies to g for every x ∈ R and we
get

(2.1.6)

‖f‖22 = g(0) = lim
λ→0

(g ∗ hλ)(0) (Theorem 1.2.6)

= lim
λ→0

∫
∞

−∞

Hλ(t)ĝ(t) dm(t) (Theorem 1.2.5).

On the other hand, by (2.1.4) we have

Hλ(t)ĝ(t) = Hλ(t)|f̂(t)|2
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which is a positive and increases to f̂(t)|2 as λ → 0, so that MCT applies and we
have

(2.1.7) lim
λ→0

∫
∞

−∞

Hλ(t)ĝ(t) dm(t) =

∫
∞

−∞

|f̂(t)|2 dm(t) = ‖f̂‖22.

Thus (2.1.6) and (2.1.7) establish (2.1.2) for f ∈ L1 ∩ L2. This also shows that

f̂ ∈ L2 for every f ∈ L1 ∩ L2.
Next, we wish to extend the Fourier transform from L1∩L2 to L2 in a surjective

norm-preserving way. More precisely let Y ⊂ L2 be the collection

Y = {g ∈ L2 | g = f̂ , for some f ∈ L1 ∩ L2}.

Let

Φ: L1 ∩ L2 → Y

be the map

Φ(f) = f̂ .

Φ is a surjective isometry. Let X be the closure of Y in L2. Now, L1 ∩L2 is dense
in L2. Since Φ is a continuous linear transformation, it is uniformly continuous on
L1 ∩L2 and hence extends to a map (necessarily a linear transformation as is easy
to check via limits)

Φ: L2 → X

and according to [Lecture 17, p.4, Lemma 1.5.1], Φ is a surjective isometry from
L2 to X. We claim that X = L2. This is equivalent to claiming that Y is dense
in L2. Since L2 is a Hilbert space, this amounts to showing that if w ∈ Y ⊥

then w = 0. Consider the collection of functions {ϕλ,α | α ∈ R, λ > 0}, where
ϕλ,α(x) = eiαxHλ(x). Then ϕλ,α ∈ L1 ∩ L2 and ϕ̂λ,α(t) = hλ(α− t), which means
t 7→ hλ(α− t) is in Y . Now suppose w ∈ Y ⊥ ⊂ L2. then

hλ ∗ w(α) =

∫
∞

−∞

hλ(α− t)w(t) dm(t) = 0.

Letting λ → 0 and using Theorem 1.2.6 we get that w(α) = 0 for every α ∈ R,
which means w = 0. Thus Y is dense in L2, and we therefore have a surjective
isometry

Φ: L2 −→∼ L2

which on L1 ∩ L2 sends f to f̂ .
We have now proven parts (a), (b), and (c) of the following theorem (see [R,

p. 186, Thm. 9.1.3])

Theorem 2.1.8. One can associate to each f ∈ L2 a function f̂ ∈ L2 so that the
following properties hold:

(a) If f ∈ L1 ∩ L2 then f̂ is the previously defined Fourier transform of f .

(b) For evry f ∈ L2, ‖f̂‖2 = ‖f‖2.

(c) The mapping f 7→ f̂ is a Hilbert space isomorphism of L2 onto L2.

(d) The following symmetric relation exists between f and f̂ : If

ϕA(t) =

∫ A

−A
f(x)e−ixt dm(x) and ψA(x) =

∫ A

−A
f̂(t)eixt dm(t),

then ‖ϕA − f̂‖2 −→ 0 and ‖ψA − f‖2 −→ 0 as A −→∞.
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Proof. We only have to prove (b) having already proved the other parts. Now
‖fχ

[−A,A]
− f‖2 −→ 0 as A −→∞. By definition, ϕA = (fχ

[−A,A]
)∧ and hence

‖f̂ − ϕA‖2 = ‖(f − fχ
[−A,A]

)∧‖2 = ‖f − fχ
[−A,A]

‖2 −→ 0

as A→∞.
The same proof works for the other half of (d). �/
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