LECTURE 24

Date of Lecture: November 10, 2018

All vector spaces are over \mathbb{C} . As before *m* is the measure on the Lebesgue σ -algebra on \mathbb{R} given by

$$m = \frac{\text{Lebesgue measure}}{\sqrt{2\pi}}$$
$$\int_{a}^{b} f(x) \, dx$$

will denote the integral of a measurable function f on \mathbb{R}^1 with respect to the Lebesgue measure over (a, b). Similarly $\int_a^b f \, dm = \int_a^b f(x) \, dm(x) = \int_{(a,b)} f \, dm$. Moreover,

$$L^p := L^p(m) \qquad (1 \le p \le \infty),$$

and for a measurable function f on $\mathbb R$

$$||f||_{p} := \left\{ \int_{-\infty}^{\infty} |f|^{p} dm \right\}^{\frac{1}{p}}.$$

1. Fourier Inversion

1.1. **Recap from last lecture.** Last lecture (Lecture 23 on Nov 6) we proved the following two results.

Theorem 1.1.1. For any function f on \mathbb{R} , and any real number y, let $f_y(x) = f(x-y)$. If $f \in L^p$, then the mapping

 $y \mapsto f_y$

is a uniformly continuous map from \mathbb{R} to L^p .

Theorem 1.1.2. [the Riemann-Lebesgue Theorem] Let $f \in L^1$. Then $\hat{f} \in C_0(\mathbb{R})$ and $\|\hat{f}\|_{\infty} \leq \|f\|_1$.

1.2. The functions H_{λ} and h_{λ} . For $\lambda > 0$ let

(1.2.1)
$$H_{\lambda}(t) = e^{-\lambda|t|} \qquad (t \in \mathbb{R})$$

and

and

(1.2.2)
$$h_{\lambda}(x) = \int_{-\infty}^{\infty} H_{\lambda}(t) e^{itx} \, dm(t) \qquad (x \in \mathbb{R}).$$

It is easy to see that

(1.2.3)
$$h_{\lambda}(x) = \sqrt{\frac{2}{\pi}} \frac{\lambda}{\lambda^2 + x^2}$$

¹Which is either taking values in $[0,\infty]$ or is integrable with respect to the Lebesgue measure

whence,

(1.2.4)
$$\int_{-\infty}^{\infty} h_{\lambda}(x) \, dm(x) = 1.$$

Proposition 1.2.5. If $f \in L^1$, then

$$(f * h_{\lambda})(x) = \int_{-\infty}^{\infty} H_{\lambda}(t)\widehat{f}(t)e^{itx} \, dm(t) \qquad (x \in \mathbb{R}).$$

Proof.

$$(f * h_{\lambda})(x) = \int_{-\infty}^{\infty} f(x - y)h_{\lambda}(y) dm(y)$$

= $\int_{-\infty}^{\infty} f(x - y) \left\{ \int_{-\infty}^{\infty} H_{\lambda}(t)e^{ity} dm(t) \right\} dm(y)$
= $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x - y)H_{\lambda}(t)e^{it(y - x)}e^{itx} dm(y) dm(t)$ (Fubini)
= $\int_{-\infty}^{\infty} H_{\lambda}(t)e^{itx} \left\{ \int_{-\infty}^{\infty} f(x - y)e^{-it(x - y)} dm(y) \right\} dm(t)$
= $\int_{-\infty}^{\infty} H_{\lambda}(t)\widehat{f}(t)e^{itx} dm(t).$

Theorem 1.2.6. If $g \in L^{\infty}$ and g is continuous at a point x, then

$$\lim_{\lambda \to 0} (g * h_{\lambda})(x) = g(x).$$

Proof.

$$(g * h_{\lambda})(x) - g(x) = \int_{-\infty}^{\infty} (g(x - y) - g(x))h_{\lambda}(y) dm(y)$$

=
$$\int_{-\infty}^{\infty} (g(x - y) - g(x))\frac{1}{\lambda}h_1\left(\frac{y}{\lambda}\right) dm(y)$$

=
$$\int_{-\infty}^{\infty} (g(x - \lambda u) - g(x))h_1(u) dm(u).$$

The absolute value of the last integrand is dominated by $2||g||_{\infty}h_1(u)$, and this is in L^1 , which means DCT applies and we can take the limit through the integral sign as λ tends to 0. The result follows immediately.

Theorem 1.2.7. If $p \in [1, \infty)$ and $f \in L^p$, then

$$\lim_{\lambda \to 0} \|f * h_{\lambda} - f\|_p = 0.$$

Proof. We claim that $h_{\lambda} \in L^q$ for every $q \in [1, \infty]$. First note that if

$$E = \{ x \mid h_{\lambda}(x) > 1 \},$$

then as $h_{\lambda} \in L^1$, $m(E) < \infty$. Let $F = \{x \mid h_{\lambda}(x) \leq 1\}$. Now $\|h_{\lambda}\|_{\infty} = 1/\lambda < \infty$, so that $h_{\lambda} \in L^{\infty}$. For $1 \leq q < \infty$ we have $h_{\lambda}^q(x) \leq h_{\lambda}(x)$ for $x \in F$, whence

$$\begin{split} \int_{-\infty}^{\infty} h_{\lambda}^{q}(x) \, dm(x) &= \int_{F} h_{\lambda}^{q} \, dm + \int_{E} h_{\lambda}^{q} \, dm \\ &\leq \int_{F} h_{\lambda} \, dm + \|h_{\lambda}\|_{\infty}^{q} m(E) < \infty, \end{split}$$

proving the claim. This means $f * h_{\lambda}(x)$ is defined everywhere.² Now,

$$(f * h_{\lambda})(x) - f(x) = \int_{-\infty}^{\infty} \left(f(x - y) - f(x) \right) h_{\lambda}(y) \, dm(y)$$

Since $h_{\lambda} dm$ gives a probability measure and since $s \mapsto s^p$ is convex, by Jensen's inequality we get

(**)
$$\left| (f*h_{\lambda})(x) - f(x) \right|^p \leq \int_{-\infty}^{\infty} \left| f(x-y) - f(x) \right|^p h_{\lambda}(y) \, dm(y).$$

Integrating both sides and applying Fubini we get

$$\|f * h_{\lambda} - f\|_p^p \le \int_{-\infty}^{\infty} \|f_y - f\|_p^p h_{\lambda}(y) \, dm(y).$$

If g is the function $g(y) = ||f_{-y} - f||_p^p$, then by Theorem 1.1.1, g is continuous on \mathbb{R} . Moreover, the integral on the right side of (**) becomes $g * h_{\lambda}(0)$, whence by Theorem 1.2.6, the right side of (**) converges to g(0) = 0 as $\lambda \to 0$.

Theorem 1.2.8. [The Fourier Inversion Theorem] Suppose f and \hat{f} are in L^1 , and

$$g(x) = \int_{-\infty}^{\infty} \widehat{f}(t) e^{itx} \, dm(t) \qquad (x \in \mathbb{R}).$$

Then $g \in C_0(\mathbb{R})$ and f(x) = g(x) a.e.

Proof. By Proposition 1.2.5

(†)
$$(f * h_{\lambda})(x) = \int_{-\infty}^{\infty} H_{\lambda}(t)\widehat{f}(t)e^{itx} dm(t)$$

for $x \in \mathbb{R}$. Since

$$\left| H_{\lambda}(t)\widehat{f}(t)e^{itx} \right| \leq |\widehat{f}(t),$$

and since by our hypothesis $\hat{f} \in L^1$, DCT applies. Now $\lim_{\lambda \to 0} H_{\lambda}(t) = 1$ for every $t \in \mathbb{R}$ as is easily checked from (1.2.1). So applying DCT, and Theorem 1.2.6 we get that the right side of (\dagger) converges to g(x) for every x as $\lambda \to 0$. On the other hand, by Theorem 1.2.7 and the fact that if $\{P_n\}$ is a sequence in L^p converging in L^p to P, then there is a subsequence $\{P_{n_k}\}$ which converges pointwise almost everywhere to P (see [Lecture 12, p.5]) we see that there is a sequence $\{\lambda_n\}$ such that $\lambda_n \to 0$ and

(‡)
$$\lim_{n \to \infty} (f * h_{\lambda})(x) = f(x) \text{ a.e.}$$

²Let q be the exponent conjugate to p. Let $\phi(y) = f(-y)$. Then $\phi \in L^p$, and hence so does ϕ_x . Since $(f * h_\lambda(x) = \int_{-\infty}^{\infty} \phi_x(y)h_\lambda(y)dm(y)$, and $h_\lambda \in L^q$, we see that $(f * h_\lambda)(x)$ is defined for every x.

We have shown that the right side (\dagger) converges to g(x), which means by f(x) = g(x) for almost every x by (\ddagger) . Finally, by definition, $g = \widehat{\psi}$ where $\psi(x) = \widehat{f}(-x)$. It follows that $g \in C_0(\mathbb{R})$ by the Riemann-Lebesgue Theorem, i.e. Theorem 1.1.2. \Box

Corollary 1.2.9. [The Uniqueness Theorem] If $f \in L^1$ and $\hat{f}(t) = 0$ for all $t \in \mathbb{R}$, then f(x) = 0 a.e.

Proof. Since $\hat{f} = 0$, therefore $\hat{f} \in L^1$ and Theorem 1.2.8 applies.

2. The Plancheral Theorem

2.1. Fourier transform on $L^1 \cap L^2$. Suppose $f \in L^1 \cap L^2$. We will show that (2.1.1) $\widehat{f} \in L^2$ and that (2.1.2) $\|f\|_2 = \|\widehat{f}\|_2$. Let $\widetilde{f}(x) = \overline{f(-x)}$ for $x \in \mathbb{R}$ and (2.1.3) $g = f * \widetilde{f}$. We also know from the previous lecture that $\widehat{f} = \overline{f}$. and hence (2.1.4) $\widehat{g} = |\widehat{f}|^2$

Now

$$g(x) = \int_{-\infty}^{\infty} f(x-y)\overline{f(-y)} \, dm(y)$$
$$= \int_{-\infty}^{\infty} f(y+x)\overline{f(y)} \, dm(y)$$
$$= \int_{-\infty}^{\infty} f_{-x}(y)\overline{f(y)} \, dm(y),$$

giving

(2.1.5)
$$g(x) = \langle f_{-x}, f \rangle \qquad (x \in \mathbb{R})$$

We know from Theorem 1.1.1 that $x \mapsto f_{-x}$ is a continuous map from \mathbb{R} to L^2 , and we know that $h \mapsto \langle h, f \rangle$ is a continuous map from L^2 to \mathbb{C} . It follows from (2.1.5) that g is continuous. Moreover, applying Cauchy-Schwarz to (2.1.5), we see that

$$|g(x)|^2 \le ||f||_2^2$$

whence g is bounded. Theorem 1.2.6 therefore applies to g for every $x\in\mathbb{R}$ and we get

(2.1.6)
$$\|f\|_{2}^{2} = g(0) = \lim_{\lambda \to 0} (g * h_{\lambda})(0) \qquad \text{(Theorem 1.2.6)} \\ = \lim_{\lambda \to 0} \int_{-\infty}^{\infty} H_{\lambda}(t)\widehat{g}(t) \, dm(t) \quad \text{(Theorem 1.2.5).}$$

On the other hand, by (2.1.4) we have

$$H_{\lambda}(t)\widehat{g}(t) = H_{\lambda}(t)|\widehat{f}(t)|^{2}$$

which is a positive and increases to $\widehat{f}(t)|^2$ as $\lambda \to 0$, so that MCT applies and we have

(2.1.7)
$$\lim_{\lambda \to 0} \int_{-\infty}^{\infty} H_{\lambda}(t)\widehat{g}(t) \, dm(t) = \int_{-\infty}^{\infty} |\widehat{f}(t)|^2 \, dm(t) = \|\widehat{f}\|_2^2$$

Thus (2.1.6) and (2.1.7) establish (2.1.2) for $f \in L^1 \cap L^2$. This also shows that $\hat{f} \in L^2$ for every $f \in L^1 \cap L^2$.

Next, we wish to extend the Fourier transform from $L^1 \cap L^2$ to L^2 in a surjective norm-preserving way. More precisely let $Y \subset L^2$ be the collection

$$Y = \{g \in L^2 \mid g = \widehat{f}, \text{ for some } f \in L^1 \cap L^2\}.$$

Let

$$\Phi\colon L^1\cap L^2\to Y$$

be the map

$$\Phi(f) = \hat{f}$$

 Φ is a surjective isometry. Let X be the closure of Y in L^2 . Now, $L^1 \cap L^2$ is dense in L^2 . Since Φ is a continuous linear transformation, it is uniformly continuous on $L^1 \cap L^2$ and hence extends to a map (necessarily a linear transformation as is easy to check via limits)

$$\Phi \colon L^2 \to X$$

and according to [Lecture 17, p.4, Lemma 1.5.1], Φ is a surjective isometry from L^2 to X. We claim that $X = L^2$. This is equivalent to claiming that Y is dense in L^2 . Since L^2 is a Hilbert space, this amounts to showing that if $w \in Y^{\perp}$ then w = 0. Consider the collection of functions $\{\varphi_{\lambda,\alpha} \mid \alpha \in \mathbb{R}, \lambda > 0\}$, where $\varphi_{\lambda,\alpha}(x) = e^{i\alpha x}H_{\lambda}(x)$. Then $\varphi_{\lambda,\alpha} \in L^1 \cap L^2$ and $\widehat{\varphi}_{\lambda,\alpha}(t) = h_{\lambda}(\alpha - t)$, which means $t \mapsto h_{\lambda}(\alpha - t)$ is in Y. Now suppose $w \in Y^{\perp} \subset L^2$. then

$$h_{\lambda} * \overline{w}(\alpha) = \int_{-\infty}^{\infty} h_{\lambda}(\alpha - t) \overline{w}(t) \, dm(t) = 0.$$

Letting $\lambda \to 0$ and using Theorem 1.2.6 we get that $\overline{w}(\alpha) = 0$ for every $\alpha \in \mathbb{R}$, which means w = 0. Thus Y is dense in L^2 , and we therefore have a surjective isometry

$$\Phi\colon L^2 \xrightarrow{\sim} L^2$$

which on $L^1 \cap L^2$ sends f to \widehat{f} .

We have now proven parts (a), (b), and (c) of the following theorem (see [R, p. 186, Thm. 9.1.3])

Theorem 2.1.8. One can associate to each $f \in L^2$ a function $\hat{f} \in L^2$ so that the following properties hold:

- (a) If $f \in L^1 \cap L^2$ then \widehat{f} is the previously defined Fourier transform of f.
- (b) For every $f \in L^2$, $\|\widehat{f}\|_2 = \|f\|_2$.
- (c) The mapping $f \mapsto \hat{f}$ is a Hilbert space isomorphism of L^2 onto L^2 .
- (d) The following symmetric relation exists between f and \hat{f} : If

$$\varphi_A(t) = \int_{-A}^{A} f(x)e^{-ixt} \, dm(x) \text{ and } \psi_A(x) = \int_{-A}^{A} \widehat{f}(t)e^{ixt} \, dm(t),$$

then $\|\varphi_A - \widehat{f}\|_2 \longrightarrow 0$ and $\|\psi_A - f\|_2 \longrightarrow 0$ as $A \longrightarrow \infty$.

Proof. We only have to prove (b) having already proved the other parts. Now $\|f\chi_{[-A,A]} - f\|_2 \longrightarrow 0$ as $A \longrightarrow \infty$. By definition, $\varphi_A = (f\chi_{[-A,A]})^{\wedge}$ and hence

$$\|\widehat{f} - \varphi_A\|_2 = \|(f - f\chi_{[-A,A]})^{\wedge}\|_2 = \|f - f\chi_{[-A,A]}\|_2 \longrightarrow 0$$

as $A \to \infty$.

The same proof works for the other half of (d).

 $\Box/$

References

[R] W. Rudin, Real and Complex Analysis, (Third Edition), McGraw-Hill, New York, 1987.