Nor	1,201	8
-----	-------	---

Lecture 22

Fubini for complete measures (continued):

Lemmal: Suppose (X, A, p) and (Y, J, 2) are two measure spaces and EES in such strot p(E)=0. Then pxv(ExF)=0 for every FEY. Similarly if FE J and v(F)=0, then pxv(ExF)=0 for every EES.

Boof : Since YEXF = µ(E). XF therefore YEXF = 0 if µ(E)=0, where (wx)(ExF) = by "Exp do = 0. Symmetry proves the second association, ged.

Lemma 2: On
$$B_{\mu} = Br \times B_{3}$$
 we have $m_{\mu} = m_{r} \times m_{s}$.
Roof: Let $Q_{0} = \frac{h}{11} [Q_{1}] \subset \mathbb{R}^{k}$. Clearly $m_{\mu}(Q_{0}) = (m_{r} \times m_{s})(Q_{0}) = 1$.
Thus it is enough to show that $m_{r} \times m_{s}$ is translation invariant
on B_{μ} . We do it by using monotone classes. The argument
is by now familiar (or should be), but have it is one more time.
Let $E \in B_{\mu}$. Define
 $E_{m}^{2} = E \cap (Q_{0} + m)$, $m \in \mathbb{R}^{k}$.
Then $\{E_{m}^{2}\}$ is a combable mille pontition of E s.t.
 $m_{r_{x}}m_{s}$ and m_{μ} have finite means on each E_{m}^{2} .

Let
$$\overline{x} \in \mathbb{R}^{k}$$
. Definie
 $M = \{E \in \mathbb{B}_{k} \mid m_{r} \times m_{g} (E_{n}^{*}) = m_{r} \times m_{g} (E_{n}^{*} + \overline{x}^{2}), \forall \overline{x} \in \mathbb{Z}^{k}\},$
 $\Im = (x_{1}, ..., x_{k}), \text{ set}$
 $\overline{x}_{r} = (x_{1}, ..., x_{k}) \in \mathbb{R}^{r}, \overline{x}_{s} = (x_{rai}, ..., x_{k}) \in \mathbb{R}^{s}.$
 $\Im = (x_{1}, ..., x_{r}) \in \mathbb{R}^{r}, \overline{x}_{s} = (x_{rai}, ..., x_{k}) \in \mathbb{R}^{s}.$
 $\Im = (x_{1}, ..., x_{r}) \in \mathbb{R}^{r}, \overline{x}_{s} = (x_{rai}, ..., x_{k}) \in \mathbb{R}^{s}.$
 $\Im = (x_{1}, ..., x_{r}) \in \mathbb{R}^{r}, \overline{x}_{s} = (x_{rai}, ..., x_{k}) \in \mathbb{R}^{s}.$
 $\Im = (x_{1}, ..., x_{r}) \in \mathbb{R}^{r}, \overline{x}_{s} = (x_{rai}, ..., x_{k}) \in \mathbb{R}^{s}.$
 $\Im = (x_{1}, ..., x_{r}) \in \mathbb{R}^{r}, B \in \mathbb{R}^{s}, \text{ Itrue clearly}$
 $E + \overline{x}^{2} = (x_{1} + \overline{x}_{r}) \times (B + \overline{x}_{s}^{2}).$ Moreover $E_{n}^{*} = A_{n}^{*} \times B_{n}^{*}$. Thus
 $A \times B \in \mathbb{M}, \text{ for every } A \in B c, B \in B s.$ $\Im = A_{n}^{*} \times B_{n}^{*}$. Thus
 $A \times B \in \mathbb{M}, \text{ for every } A \in B c, B \in B s.$ $\Im = A_{n}^{*} \times B_{n}^{*}$. Thus
 $A \times B \in \mathbb{M}, \text{ for every } A \in B c, B \in B s.$ $\Im = A_{n}^{*} \times B_{n}^{*}$. Thus
 $A \times B \in \mathbb{M}.$ $\Im = A_{n}^{*} \times B_{n}^{*} \times B_{n}^{*}$. Thus
 $M = B_{n}$. $\Im = C_{n}^{*} \times B_{n}^{*} \otimes C_{n}^{*} \otimes C_{n$

Example: Let
$$E = \{x\} \times B$$
, $x \in \mathbb{R}^r$, $B \subseteq \mathbb{R}^s$, $B \notin X_s$. Then
 $E \notin \mathcal{L}_r \times \mathcal{L}_s$ (for otherwise $E_x = B$ would be in \mathcal{L}_s). Let
 $S = \{x\} \times \mathbb{R}^s$. Since $\Psi_s = \mu(\{x\}) \times \mathbb{R}^s = 0$, therefore $m_k(s) = m_r \times m_s(s) = 0$.
Since $E \subset S$ and m_k is complete, thus means $E \in \mathcal{L}_k$.

The above example shows that
$$\lambda r \times h_s \neq h_k$$
. However
the σ -algebras $B_r \times B_s = B_k$, $\lambda_r \times \lambda_r$, and λ_k are intimately related.

and $m_r(B-A)=0$.

9t follows that E-A is an mr-null set, as is B-E. From Lemme 3 it follows that (E-A)× R^S ∈ K_k. Since A ∈ B_r and A× R^S ∈ B_r × B₃ = B_k ⊂ K_k, we have E×R^S = A×R^S ∪ (E-A)×R^S ∈ K_k. Thus E×R^S ∈ K_k + E ∈ K_r. Similarly (or by symmetry) R^r × D ∈ K_k + D∈ K_s. This yields

$$E \times D = (E \times \mathbb{R}^{3}) \cap (\mathbb{R}^{r} \times D) \in \mathcal{K}_{2} \quad \forall E \in \mathcal{K}_{r}, D \in \mathcal{K}_{2}.$$

$$Vr \times \mathcal{K}_{3} \subset \mathcal{K}_{2}.$$

$$Let Z \in \mathcal{K}_{r} \times \mathcal{K}_{3}. \text{ Then } Z \in \mathcal{K}_{2}. \text{ Hence we can find } A, B$$

$$iw B_{2} \quad such \quad \text{that } m_{2} (A - B) = O \quad \text{and } A \subset 2 \subset B. \text{ Thus}$$

$$m_{2} (A) \leq m_{2}(2) \leq m_{2}(B) \quad \& M_{r} \times m_{3}(A) \leq M_{r} \times m_{3}(2) \leq m_{r} \times m_{2}(B).$$
Now $A, B \in B_{2}$ hence $m_{r} \times m_{3}(A) = m_{2}(A) = m_{2}(B) = M_{r} \times m_{3}(B).$ We thus hence
$$m_{r} \times m_{3} (A) \leq M_{r} \times m_{3}(2) \leq m_{r} \times m_{3}(B).$$

$$M_{r} \quad \text{othere completion } A_{r} = m_{2}(2).$$

$$for every Z \in \mathcal{K}_{r} \times \mathcal{K}_{3}.$$
Since m_{2} is the completion $A \in B_{2}, m_{r} \times m_{3}$ and
$$B_{2} \subset \mathcal{K}_{r} \times \mathcal{K}_{3} \subset \mathcal{K}_{2}, \quad \text{if is clean from the above that } (\mathcal{K}_{2}, m_{2}).$$

$$is the completion of (\mathcal{K}_{r} \times \mathcal{K}_{3}, m_{r} \times m_{3}).$$

$$g \in d.$$

Two Lemmas on Completions

Lanma A: Let (X, M, u) be a measure spone and (X, m, i) be its completion. If f is mi-mible then I an m-mible function g such that f=g a.e. [jn].

Roof: We can reduce, in the usual way, to the situation

where
$$f \gg 0$$
, In this case we have simple will furtions
In , NE N 3.2.
 $0 = 3_1 \leq 3_2 \leq \ldots \leq 3_n \, n \notin f$.
Now
 $f = \sum_{n=1}^{\infty} (3_{nn-1} + n)$
and since call Invit-In can be written as a finite
sum $\sum_{n=1}^{\infty} c_{n} \sum_{n=1}^{\infty} (3_{n} + n)$
and since call Invit-In can be written as a finite
sum $\sum_{n=1}^{\infty} c_{n} \sum_{n=1}^{\infty} (3_{n} + n)$
and since call Invit-In can be written as a finite
 $f = \sum_{n=1}^{\infty} (3_{n} + n)$ and $n \ge 0$, $D = E M$, $f = M = 0$.
Define
 $g = \sum_{n=1}^{\infty} a_n X_{En}$ $a_n \ge 0$, $E = C Bn$, $\mu(Bn-An) = 0$.
Define
 $g = \sum_{n=1}^{\infty} a_n X_{En}$.
Then the set $N = \{r \le n \mid f(r) \neq g(r)\} \subseteq \bigcup (Br - An)$
and therefore $\hat{\mu}(N) = 0$. Thus $f = g$ are $[ris]$.
Lemma B: Let (X, A, μ) and (Y, J, ν) be complete, $\overline{v} = finite$
measure space. Let $(X \times Y, M, \lambda)$ be the complete of $(X \times Y, A_n J, \mu \times \nu)$
 $g = L = D = J$ with the property That $\mu(F(m))$ and
 $k_{\infty}(rg) = 0$ for all $g \in Y - F(m)$.
Punch: Write that these means the in T-mible for almost every ress.
 $fr \ge 2 = a$ and form a $M = 0$ and $M = 0$ and $M = 0$ and $M = 0$ for all $y \in Y - F(m)$.

Prof: There exists
$$P \in M$$
, $\lambda(P) = 0$ such that $h(x,y) = 0$ for
every $(x,y) \in X \times Y - P$. Since (M, λ) is the completion of
 $(\lambda \times J, \mu \times \nu)$, there exists $Q \in A \times J$, $\mu \times \nu(Q) = 0$, such that
 $P \subset Q$. For $x \in X$, let, as before, $\varphi_Q(x) = \nu(Q_X)$. Then
 $\int_X \varphi_Q d\mu = (\mu \times \nu)(Q) = 0$.

Since
$$Q_Q \ge 0$$
, this means $Q_Q = 0$ a.e. $[n]$. In other
words $\exists a \mu$ -mull set $N \ge 0$. for $x \in X - N$, $Q_Q(x) = 0_s$ i.e.,
 $Y(Q_x) = 0$. Now $P_x \subseteq Q_x$ and since $Y(Q_x) = 0$ and
 Y is complete, $P_x \in J$ and $Y(P_x) = 0$. For $y \in Y - P_x$ we
have $h_x(y) = 0$, by our choice of P . Set $S(x) = P_x$. Then
 N and $\{S(x)\}_{x \in X}$ satisfy the conclusions of our Theorem.
 $q.e.d.$