The Riemann-Lebegure Lemma for $L^{\prime}(T)$:
As before $u_{n}(t)=e^{i n t}, t \in \mathbb{Z}$.
Suppose $f \in L^{p}(T), 1 \leq p<\infty$. Then cleanly $f \cdot u_{-n} \in L^{p}(T) \forall n \in \mathbb{Z}$.
Hence the Fowria coefficients

$$
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t \quad n \in \mathbb{Z}
$$

make sense.
Let $f \in L^{p}(T)$ and suppose $\varepsilon>0$ has been given. Then we can find $g \in C(7)$ s.t. $\|f-g\|_{p}<\varepsilon$ (see Theorem 1.2 .1 of Lecture 16 on Oct 9). Iunthen \exists a trigonometric polynomial P s.t. $\|g-P\|_{\infty}<\varepsilon$. Since $\|g-P\|_{p} \leqslant\|g-P\|_{\infty}$, wee the refire have

$$
\|f-P\|<\varepsilon .
$$

Now $P=\sum_{k=-N}^{N} c_{k} u_{k}$ and hence for $\left.|n|\right\rangle N,\left\langle P, u_{n}\right\rangle=0$. Hence for $|n|>N$ we have

$$
\begin{aligned}
|\hat{f}(n)| & =\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi}\{f-p\} e^{-i n t} d t\right| \\
& \leq\|f-P\|_{p} \cdot\|u-n\|_{q} \\
& =\|f-P\|_{p} \\
& <2 \varepsilon .
\end{aligned}
$$

Thus $\lim _{\ln \mid \rightarrow \infty} \hat{f}(n)=0$. We have thurs proven the so-called Riemann-Lebespre lbevorem fer $L^{P}(T)$ (see statement on neat page). However note that $L_{P}(T) \subset L^{\prime}(T), P \geqslant 1$, hence it is really an L^{\prime} statement.

Theron (The Riemanu-Lebesgue Lemma): Let $f \in L^{\prime}(\tau)$. Then

$$
\lim _{|n| \rightarrow \infty} \hat{f}(n)=0
$$

Equivalently

$$
\lim _{|n| \rightarrow \infty} \int_{-\pi}^{\pi} f(t) \cos (n t) d t=\lim _{\ln \mid \rightarrow \infty} \int_{-\pi}^{\pi} f(t) \sin (n t) d t=0
$$

We will later prove versions of this for $L^{\prime}(\mathbb{R})$ valther them $L^{\prime}(T)$. That is a deeper statement.

Measure Theony_for product Spaces
In what follows (x, δ, μ) and (y, J, ν) are two σ-finite measures. Recall that sets of the form $A \times B$, $A \in d, B \in Y$ are called meaomable rectangles. The collection $R=R(J, Y)$ of finite unions of mile rectangles fans an algebra, and in font every mennen of i can actirally be written as a finite disjoint union of m'ble rectangles (ss ec HW 7 for all there fonts).

Definition: $\& \times J:=\sigma(R(t, J))$.

Note : Since R consists of finite disjoint union A m'ble rectangles, $\& x 7$ is in font the σ-algelva generated by noble rectangles.

Notations: For $E \subseteq X \times Y, x \in X$ and $y \in Y$ define

$$
\begin{aligned}
& E_{x}=\{y \in Y \mid(x, y) \in E\} \\
& E^{y}=\{x \in X \mid(x, y) \in E\} .
\end{aligned}
$$

If $x^{p / E} y_{y}^{q}$ are the two projections then essentially E_{x} is $p^{-1}(x)$ and E^{y} is $q^{-1}(y)$.

Theorem: Lit $E \in \& x J$. Then for every $x \in X$ and every $y \in Y$ we have $E_{x} \in J$ and $E^{y} \in d$.
Prof:
Fix $x \in X$. Defuie

$$
m=\left\{E \in d x J \mid E_{x} \in J\right\} .
$$

Clearly every m'ble rectangle $A \times B$ lies in M, and heme so does $X \times Y$. Now $\left(E^{c}\right)_{x}=Y-E_{x}$ and hence if E is in M so is E^{c}. If $E=\bigcup_{n=1}^{\infty} E_{n}$, then $E_{x}=\bigcup_{n=1}^{\infty}\left(E_{n}\right)_{x}$ and hence of earl E_{n} is in M so is E. Thus M is a σ-subalgehra of $\Delta_{x} J$ containing R. It follows thant $M=\Delta x J$. Thus $E_{x} \in J \forall E \in d x J$. since $x \in X$ is onbitian, $E_{x} \in J \quad \forall x \in X, E \in d x J$. By symmetry if $\in \in d x J$, and $y \in Y$, then $E^{y} \in \notin$.

Notation: Suppose $E \in \&_{x} J$. Define $\varphi_{E}: X \rightarrow[0, \infty]$ and $\psi_{E}: Y \longrightarrow[0, \infty]$ by the formulas

$$
\left.\begin{array}{ll}
\varphi_{E}(x)=\nu\left(E_{x}\right) & x \in X \\
\Psi_{E}(y)=\mu\left(E^{y}\right) & y \in Y .
\end{array}\right\} \begin{aligned}
& \text { This mates } \\
& \text { pervious the }
\end{aligned}
$$

Theorem: For earl $E \in d x J, \varphi_{E}$ is d-measmable and Ψ_{E} is J-measurable.
Proof: Let $\left\{X_{n}\right\}$ be a A-mile pentition of X with $\mu\left(x_{n}\right)<\infty \quad \forall n \in \mathbb{N}$, and $\left\{y_{n}\right\}$ a J-m'ble panticon of Y with $\nu\left(y_{n}\right)<\infty \quad \forall n \in \mathbb{N}$. Let

$$
Z_{m n}=X_{n} \times Y_{m}, \quad n, m \in \mathbb{N} .
$$

Let
$C_{e}=\{E \in d x] \mid \varphi_{E}$ is s-measurable $\}$.
Let $A \times B$ be a m'ble rectangle. Then clearly

$$
\varphi_{A \times B}=\nu(B) \cdot x_{A}
$$

and hance $\varphi_{A \times B}$ as s-measurable. Movonus, if R_{1}, R_{2} are disjoint m'ble rectangles and $Q=R_{1} \cup R_{2}$, then $\varphi_{Q}=\varphi_{R_{1}}+\varphi_{R_{2}}$ whence $Q \in C$. Thus $\mathbb{C} \subseteq \mathscr{C}$. If $E_{1} \subset E_{2} \subset \ldots C E_{n} \subset \ldots$ is a chain of immuring Sets with $E_{n} \in C_{e} \forall n$, then setting $E=U E_{n}$, we see that $\left(E_{n}\right)_{x} \uparrow E_{x}$, whence $\left.\nu\left(E_{n}\right)_{x}\right) \uparrow \nu\left(E_{x}\right)$, lie., $\varphi_{E}=\lim _{n \rightarrow \infty} \varphi_{E_{n}}$, and since could $\varphi_{E_{n}}$ is $\&$-m'ble so is φ_{E}. Thus $E \in l_{e}$.

Suppose we have

$$
A \times B \supset E_{1} \supset E_{2} \supset \ldots \supset E_{n} \supset \ldots
$$

with $\nu(B)<\infty$ and $E_{i} \in l \forall i$. Let $E=\bigcap E_{n}$. Then we have $E_{x}=\bigcap_{n}\left(E_{n}\right)_{x}$. If $\left.x \notin A, E_{n}\right)_{x}=\phi \forall n, E_{x}=\phi$, and $\varphi_{E_{n}}(x)=\varphi_{E}(x)=0$. If $x \in A$ then

$$
B \supset\left(E_{1}\right)_{x} \supset\left(E_{2}\right)_{x} \supset \ldots \supset\left(E_{w}\right)_{1} \supset \ldots
$$

Since $\nu(B)<\infty, \quad \nu\left(E_{x}\right)=\lim _{n \rightarrow \infty} \nu\left(\left(E_{n}\right)_{x}\right)$, lie., in either care $(x \in A$, or $x \notin A)$, the have

$$
\varphi_{E}=\lim _{n \rightarrow \infty} \varphi_{E_{n}} .
$$

This means C_{E} is f-m'ble, whence $E \in C_{C}$ in this cave.
Let

$$
m=\left\{E \in d \times \tau \mid E \cap z_{m n} \in C_{e} \forall m, n \in \mathbb{N}\right\} .
$$

Our arguments above show that M is a monotone class containing R. Since R is an algitrn, by pobleres in th',$\quad M=\sigma(R)=d x J$.

Now for $E \in \delta x J$,

$$
\varphi_{E}=\sum_{m, n} \varphi_{E \cap Z m n}
$$

It follows that Q_{E} is s-m'ble slice each $Q_{E \cap z_{m n}}$ is. By symmetry ψ_{E} is J-mible for every $E \in d x J$.

Theron: Let $E \in d x]$. Then

$$
\int_{x} \varphi_{E} d \mu=\int_{y} \psi_{E} d \nu
$$

Moreona $E \longmapsto \int_{x} \varphi_{E} d_{\mu}\left(E \int_{Y} \psi_{E} d \nu\right)$ is a measme on $\left.\delta_{x}\right]$.
Boll:
This was Quiz.

Definition: With $(x, 8, \mu)$ and (y, J, ν) as above $(\mu, \nu$ σ-finite), the product measure $\mu x \nu$ on $\lambda x J$ is defined by

$$
\left.(\mu \times v)(E)=\int_{x} \varphi_{E} d \mu . \quad(E \in d x]\right)
$$

Nate that

$$
(\mu \times \nu)(E)=\int_{y} \varphi_{E} d \nu \quad(E \in \$ \times J)
$$

Remark: The above defer and the theovern above it really say that

$$
\left.\left.\begin{array}{rl}
\int_{x} \int_{y} x_{E}(x, y) d \nu(y) d \mu(x) & =\int_{x_{x-1}} x_{E} d(\mu \times \nu) \\
& =\int_{y} \int_{x} x_{E}(x, y) d \mu(x) d \nu(y)
\end{array}\right\} \forall E \in d x\right]
$$

This is a special case of Tonellies Thoovens which in turn is a special case of Fubini's Theorem.

Move Notations: In the above situation if f is a function on $X x y$, then fer $x \in X$ and $y \in Y$ define f_{x} on y and f^{y} on x by

$$
f_{x}(z)=f(x, z) \quad z \in y
$$

and

$$
f^{y}(z)=f(z, y) \quad z \in X .
$$

Thus for any point (x, y) on $X x y$ ur e have

$$
f_{x}(y)=f^{y}(x)=f(x, y)
$$

Theorem: if f is $\Delta x J$-measurable then for $x \in X$ and $y \in Y$, f_{x} is I-measurable and $f y$ is d-measurable.
Prof: If v is a measurable set in the tongit of f, and $E=f^{-1}(v)$, then $E_{x}=f_{i}^{-1}(v)$ for $x \in X$ and
$E^{y}=\left(f^{y}\right)^{-1}(E)$. The conclusion follows from cathie results.

Iubini's Theorem
We continue to be in the above situation, ie., (α, ϕ, μ) and (y, J, v) are r-finite.

Even move notations: Let f be $d x J-m^{2}$ ble. Suppress $f \geqslant 0$.
Define

$$
\varphi_{f}: x \longrightarrow[0, \infty] \text { and } \psi_{f}: y \longrightarrow[0, \infty]
$$

by

$$
\begin{equation*}
\varphi_{f}(x)=\int_{y} f_{x} d \nu \quad(x \in X) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{f}(y)=\int_{x} f^{y} d \mu \quad(y \in Y) \tag{2}
\end{equation*}
$$

Tonelli's Theovenu: Let $f: x \times y \rightarrow[0, \infty]$ be an $\delta x]-m^{3}$ be functions. Then
(a) Q_{f} is d-middle and ψ_{f} is J-mble.
(b) $\int_{x} q_{f} d \mu=\int_{x x y} f d(\mu x \nu)=\int_{y} \Psi_{f} d \nu$, or equivalently,

$$
\int_{x} \int_{y} f(x, y) d \nu(y) d \mu(x)=\int_{x x y} f d(\mu x \nabla)=\int_{y} \int_{x} f(x, y) d \mu(x) d \nu(x)
$$

 I $\mu \times 0(E)$ and the purus theorem gives the rest. Tram have to the general Tonelli theorem follows the uar yoga (simple fans, appeximation by simple fro, ocT...). We will fud ont detriile neat dan.
\qquad

