August 14, 2018

Foo the homenerte problems we see that if C_{l} is any collection of subsets of a non-empty set X, then there exists a σ-algchan $\sigma(l)$ on X such that $l \subset \sigma(b)$ and if M is any σ-algebra in X containing b thess $\sigma(b) \subset M$. Such a σ-algeha is dearly unique and is called the σ-algelua generated by l^{6}.

If X is a topological space, the σ-algelue generated by the open sets of X is called the Bored σ-algelva of X, denoted $B(x)$, or simply B (if the context is clear), and members of $B(x)$ are called Bowel sets. A map $f: x \rightarrow y$ with Y a topological space is called Bree measurable if at is mensurable for (X, B). In otter words f is measurable if $f^{-1}(v) \in B$ for every open ret V in Y.

Note : Every continuous function is obviously Barrel mable.

Theoven: Let y be a topological space, (x, m) a measurable space, and $f: X \longrightarrow Y$ a map. Let

$$
\zeta=\left\{A \subseteq Y \mid \quad f^{-1}(A) \in M\right\} .
$$

Then
ca) C is a σ-algebra in Y
(b) If f is measurable then $f^{-1}(A) \in M$ for every
$A \in B(Y)$.
(c) If $y=[-\infty, \infty]$ with its usual topology, then f is measurable of and only if $f^{-1}([a, \infty]) \in M$ for every α in \mathbb{R}. (The "usual topology on $[-\infty, \infty)^{\prime}$ is given by the following metric: If $a \leqslant b, d(a, b)=\tan ^{-1}(b)-\tan ^{-1}(a)$, where $\tan ^{-1}(-\infty)=-\frac{\pi}{2}$ and $\tan ^{-1}(\infty)=\frac{\pi}{2}$.)
(d) If f is measurable, z a topological space, and $g: y \longrightarrow 2$ a Bore map, then $g \circ f: x \longrightarrow 2$ is measurable.
Prof:
A special case of (C) is pent of your $H W$ and hence tee will not prove (C) wow.
(a) Note that $f^{-1}\left(\bigcup_{\alpha} A_{\alpha}\right)=\bigcup_{\alpha} f^{-1}\left(A_{\alpha}\right)$ and $f^{-1}(Y-A)$ $=X-f^{-1}(A)$, and that $f^{-1}(Y)=x$. Tom the last relation, it is clear that $Y \in b_{\text {. F om the second relation at in }}$ char that E is closed eurder complements since M is. Finally, if $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ are in b_{l} then

$$
f^{-1}\left(\bigcup_{n} A_{n}\right)=\bigcup_{n} f^{-1}\left(A_{n}\right)
$$

and the right side is in M scrice M is closed under constable unions. This means $\cup A_{n} \in C_{\text {s proving (a). }}$
(b) Since f is measurable, by definitions all open subsets of Y are merntress of C. By (a), C is a σ-algehna. It follows from the font that $B(Y)$ is generated by open sets that $B(y) \subseteq 6$. Thus $f^{-1}(A) \in M \quad \forall A \in B(Y)$.
(c) This essentially one of your til problems and so the part is not given here.
(d) This follows form (b). In greater detail, slice g is a Bowel map, fer an open set V in $2, g^{-1}(V) \in \mathcal{B}(Y)$, and hence by $(b), f^{-1}\left(g^{-1}(v)\right) \in M$, ie., $(g \circ f)^{-1}(v)=f^{-1}\left(g^{-1}(v)\right) \in \mathcal{M}$.

Limits of Measurable functions
Recall the definition of $\limsup _{n \rightarrow \infty}$ an and $\operatorname{liminif}_{n \rightarrow \infty}$ an fer a sequence $\left\{a_{n}\right\}$ in $[-\infty, \infty$] (Note $=-\infty$ ant o are allowed as values!). Set

$$
\left.\begin{array}{l}
b_{k}=\sup \left\{a_{k}, a_{k+1}, \cdots\right\} \\
c_{k}=\sin \left\{a_{k}, a_{k+1}, \cdots\right\}
\end{array}\right\} \quad k=1,2,3, \ldots
$$

Then $\left\{b_{k}\right\}$ is a decreasing sequencing and $\left\{c_{k}\right\}$ an increasing sequence. Set

$$
\beta=\text { inf }\left\{b_{1}, b_{2}, b_{3}, \ldots\right\} \text { and } r=\sup \left\{c_{1}, c_{2}, c_{3}, \ldots\right\} \text {. }
$$

Note $b_{k} \longrightarrow \beta$ and $c_{k} \longrightarrow \gamma$ as $k \rightarrow \infty$.
Recall that theme is a subsequence $\left\{a_{n_{j}}\right\}$ o $\left\{a_{n}\right\}$ sum b tat

$$
a_{n j} \longrightarrow \beta \text { as } j \longrightarrow \infty
$$

and sinvilady a subsequence $\left\{a_{m}, r\right\}$ o $\left\{a_{m}\right\}$ st.

$$
a_{m} \longrightarrow r \text { as } r \longrightarrow \infty \text {. }
$$

(Why is this time?)

We wite

$$
\beta=\lim _{n \rightarrow \infty} \operatorname{sunp} \text { an and } r=\lim _{n \rightarrow \infty} \sin _{n \rightarrow \infty} \text { an. }
$$

β is called the upper limit of $\left\{a_{n}\right\}$ and r the lower limit of $\left\{a_{n}\right\}$.

Cleanly

$$
\lim _{n \rightarrow \infty} \sin _{n} a_{n}=-\lim _{n \rightarrow \infty} \operatorname{cup}_{n}\left(-a_{n}\right)
$$

Notations: Suppose $\left\{f_{n}\right\}$ is a sequence of $[-\infty, \infty]$-valued functions on a set X. Define

$$
\left.\begin{array}{r}
\sup _{n} f_{n}: x \rightarrow[-\infty, \infty] \\
\operatorname{inif}_{n} f_{n}: x
\end{array}\right][-\infty, \infty]
$$

in the obvious way. For example

$$
\begin{aligned}
&\left(\sin f_{n}\right)(x):= \\
& \text { and } \quad \sup _{n}\left(f_{n}(x)\right) \quad x \in X \\
&\left(\lim _{n \rightarrow \infty} \sup _{n} f_{n}\right)(x):=\lim _{n \rightarrow \infty}\left(f_{n}(x)\right) \quad x \in X .
\end{aligned}
$$

Theorem: If $f_{n}: x \longrightarrow[-\infty, \infty]$ is m^{2} be for $n \in \mathbb{N}$, lien $\sup _{n} f_{n}, \operatorname{lin} f f_{n}, \lim _{n \rightarrow \infty} \sup _{n} f_{n}, \lim _{n \rightarrow \infty} \operatorname{lnff}_{n}$ are m'ble.
Prof :
Let $g=\sup f_{n}$. Then

$$
g^{-1}((\alpha, \infty])=\bigcup_{n=1}^{\infty} f_{n}^{-1}((\alpha, \infty]) .
$$

Indeed if $x \in X$ in s.t. $g(x) \in[\alpha, \infty]$ then there is some

In s.t. $f_{n}(x) \in(\alpha, \infty]$ and rice-vensa. It follows that $g^{-1}([\alpha, \infty])$ is a mable st shine each $f_{n}^{-1}((\alpha, \infty])$ is. By an earlier theovenn this means g is noble. Similarly info f_{n} is $m^{2} b l e . ~ S i n c e ~$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup \text { for }=\inf _{k}\left\{\sup _{j \geqslant k} f_{j}\right\} \\
& \lim _{n \rightarrow \infty} \sin _{n} f_{n}=\sup _{k}\left\{\operatorname{mim}_{j \geqslant k} f_{j}\right\}
\end{aligned}
$$

and
it follows that $\limsup _{n \rightarrow \infty} f_{n}$ and $\lim _{n \rightarrow \infty}$ inf fur ane mible.

Corollary 1: The limit of every prointuinc commengent sequence of complex m^{2} bl functions is m^{\prime} be.
(Note: By defer a complex m'ble function cannot take values $-\infty$ or ∞. A complex m'ble function takes values in \mathbb{C} and is m'ble with resput to the topology of \mathbb{C}.)

Prof: Suppose \{nt\} ~ i s ~ a ~ s e q u e n c e ~ o f ~ c o m p l e x ~ m'ble functions and for each $n, f_{n}=u_{n}+i r_{n}$ where u_{n} and v_{n} are veal valued. Then are have seen that un and v_{n} are noble. Now supple for connengs pointwine to a complex valued function f. Write $f=u+i r, u=R e f, v=\operatorname{Im} f$. Then $u_{n} \rightarrow u$ and $v_{n} \rightarrow v$ pointarise as $n \rightarrow \infty$. Since $u=\operatorname{him} \sup u_{n}\left(=\operatorname{hin} \inf u_{n}\right)$ u is m^{2} be. Sinidanly v is m^{\prime} ble.

For any fractions f from a sect X to $[-\infty, \infty]$, we difuir

$$
f^{t}=\max \{f, 0\} \text { and } f^{-}=-\min \{f, 0\} \text {. }
$$

We then have

$$
\begin{gathered}
f^{+} \geqslant 0, \quad f^{-} \geqslant 0 \\
|f|=f^{+}+f^{-} \\
f=f^{+}-f^{-}
\end{gathered}
$$

The functions f^{+}and f^{-}are called tee positive and negative parts of f respectively.

There are many ways of writing f as the difference of two nou-regative functions, but the representation $f=f^{+}-f^{-}$is minimal in the following sense.

Proposition: If $f=g-h, g \geqslant 0, h \geqslant 0$, then $f^{t} \leqslant g$ and $f^{-} \leq h$.
Prof: we have $f \leqslant g$ which means max $\{f, 0\} \leqslant g$. Similarly $\max \{-f, 0\} \leqslant h$, but $\max \{-f, 0\}=-\min \{f, 0\}$ and hence $f^{-} \leq h$.

Corollary 2 (to the Thovem): If $f: x \longrightarrow[-\infty, \infty]$ and
$g: x \longrightarrow[-\infty, \infty]$ are mable then so are max $\{f, g\}$ and $\operatorname{uin}\{f, g\}$. In penticular f^{+}and f^{-}are m'ble.
Poof: $\max \{f, g\}=\sup \{f, g, f, g, f, g, \ldots\} \& \min \{f, g\}=\ln f f t, g, f, g, \cdots\}$.

