Oct 23,2018
I realised today (NN 3) that I hard dove this calculation in class and forgotten to put in the notes for Venture 19.

Theorem: $\quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$
Prof:
Lit $f \in L^{2}(7)$ be the function

$$
f(t)=t^{2} \quad t \in[-\pi, \pi] .
$$

Then

$$
\begin{equation*}
\|f\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} t^{4} d t=\frac{1}{2 \pi} 2\left(\frac{\pi^{5}}{5}\right)=\frac{\pi^{4}}{5} \tag{1}
\end{equation*}
$$

We have $\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} t^{2} e^{-n t} d t \quad n \in \mathbb{Z}$. So

$$
\begin{equation*}
\hat{f}(0)=\frac{1}{2 \pi}^{2} \frac{\pi^{3}}{3}=\frac{\pi^{2}}{3} . \tag{2}
\end{equation*}
$$

To compute $\hat{f}(n)$ for $u \notin \mathbb{Z}$ let us compute the indefinite integral $\int t^{2} e^{x t} d t$ for $x \neq 0$.

$$
\begin{aligned}
\int t^{2} e^{x t} d t & =\frac{t^{2} e^{x t}}{x}-\frac{2}{x} \int t e^{x t} d t \\
& =\frac{t^{2} e^{x t}}{x}-\frac{2}{x}\left\{\frac{t e^{x t}}{x}-\frac{1}{x} \int e^{x t} d t\right\} \\
& =\frac{t^{2} e^{x t}}{x}-\frac{2 t e^{x t}}{x^{2}}+\frac{2}{x^{3}} e^{x t}+C
\end{aligned}
$$

This means

$$
\begin{aligned}
& \int t^{2} e^{-i n t} d t=-\frac{t^{2} e^{-i n t}}{i n}+\frac{2 t e^{-i n t}}{n^{2}}-\frac{2}{i n^{3}} e^{-i n t}+c \\
& \text { for } n \in \mathbb{Z}-\{0\}
\end{aligned}
$$

In easy computation (using the fat that $e^{-i n \pi}=e^{-i n(-T)}$ ) gives:

$$
\left.\begin{array}{rl}
\hat{f}(n)=\frac{1}{2 \pi}\left[\frac{2 t e^{-i n t}}{n^{2}}\right]_{t=-\pi}^{t-\pi} & =\frac{1}{2 \pi} 2 \frac{2 \pi e^{-i n \pi}}{n^{2}}  \tag{3}\\
& =\frac{2}{n^{2}} e^{-i n \pi}
\end{array}\right\} n \in \mathbb{\pi}-\{0\}
$$

From (2) and (3), using Parseval's identity, we get

$$
\begin{align*}
\|f\|_{2}^{2} & =\sum_{n \in \mathbb{Z}}|\hat{f}(n)|^{2} \\
& =|\hat{f}(0)|^{2}+\sum_{n \in \mathbb{Z}-\{0\}}|\hat{f}(n)|^{2} \\
& =\frac{\pi 4}{9}+2 \sum_{n=1}^{\infty} \frac{4}{n^{4}} \tag{4}
\end{align*}
$$

ie. $\quad\|f\|_{2}^{2}=\frac{\pi^{4}}{9}+8 \sum_{n=1}^{\infty} \frac{1}{n^{4}}$

Equating the right sides of (4) and (1) we get

$$
\frac{\pi^{4}}{9}+8 \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{5}
$$

ie $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$, as required.

