LECTURE 18

Date of Lecture: October 16, 2018
All vector spaces are over \mathbb{C}.

1. Complete Orthonormal Sets

Throughout this section, H is a Hilbert space.
1.1. Last time we stated but did not prove the following theorem.

Theorem 1.1.1. Let $\left\{u_{\alpha} \mid \alpha \in A\right\}$ be an orthonormal set in H. Then the following conditions are equivalent.
(a) $\left\{u_{\alpha} \mid \alpha \in A\right\}$ is a maximal orthonormal set in H.
(b) The linear span P of $\left\{u_{\alpha} \mid \alpha \in A\right\}$ is dense in H.
(c) For every $x \in H$ we have

$$
\|x\|^{2}=\sum_{\alpha \in A}|\widehat{x}(\alpha)|^{2}
$$

(d) For every pair of vectors x, y in H we have

$$
\langle x, y\rangle=\sum_{\alpha \in A} \widehat{x}(\alpha) \overline{\widehat{y}(\alpha)}
$$

Proof. Suppose (a) is true. If the linear span P of $\left\{u_{\alpha} \mid \alpha \in A\right\}$ is not dense in H then $Q=\bar{P}^{\perp} \neq 0$, where \bar{P} is the closure of P in H. We can therefore find a vector $u \in Q$ such that $\|u\|=1$. It is clear that $\left\{u_{\alpha} \mid \alpha \in A\right\} \cup\{u\}$ is also an orthonormal set, contradicting the maximality of $\left\{u_{\alpha} \mid \alpha \in A\right\}$. We have just proved that $(a) \Longrightarrow(b)$.

Next assume (b) is true. Then (c) is an immediate consequence of Theorem 1.6.1 of Lecture 17.

Now assume (c). We have the polarisation identity (see Problem (4) of Quiz 2) for any Hilbert Space $\left(M,\langle\cdot, \cdot\rangle_{M}\right)$ and for any $x, y \in M$.

$$
\langle x, y\rangle_{M}=\frac{1}{4}\left(\|x+y\|_{M}^{2}-\|x-y\|_{M}^{2}+i\|x+i y\|_{M}^{2}-i\|x-i y\|_{M}^{2}\right) .
$$

Apply this to both the Hilbert spaces H and $\ell^{2}(A)$. Then (d) follows easily from (c).

As for $(d) \Longrightarrow(a)$, suppose (d) is true and $\left\{u_{\alpha} \mid \alpha \in A\right\}$ is not a maximal orthonormal set. Then there exists a vector $u \in H,\|u\|=1$, such that such that $\left\langle u, u_{\alpha}\right\rangle=0$ for every $\alpha \in A$. In particular this means $\widehat{u}(\alpha)=0$ for every $\alpha \in A$. By (d) this means for any $x \in H$,

$$
\langle u, x\rangle=\sum_{\alpha \in A} \widehat{u}(\alpha) \overline{\widehat{x}(\alpha)}=0
$$

Thus $u=0$ contradicting the fact $\|u\|=1$. Thus $(d) \Longrightarrow(a)$.

Definition 1.1.2. An orthonormal set $\left\{u_{\alpha} \mid \alpha \in A\right\}$ in H is said to be a complete orthonormal set for H or an orthonormal basis of H if it satisfies any of the equivalent conditions of Theorem 1.1.1.
Theorem 1.1.3. If H is non-zero then it has a complete orthonormal set.
Proof. Since $H \neq 0$ it has a vector u of norm 1, and $\{u\}$ is an orthonormal set in H. Thus the collection \mathscr{A} of orthonormal sets in H is non-empty. \mathscr{A} has a natural order given by inclusion of sets. If we have a chain \mathscr{S} in \mathscr{A}, say $\mathscr{S}=\left\{S_{\lambda} \mid \lambda \in \Lambda\right\}$ where Λ is a totally ordered set, with $S_{\lambda_{1}} \subset S_{\lambda_{2}}$ if $\lambda_{1} \leq \lambda_{2}$, then

$$
S=\bigcup_{\lambda \in \Lambda} S_{\lambda}
$$

is easily seen to be an orthonormal set. Thus by Zorn's lemma \mathscr{A} has a maximal element $S^{*}=\left\{u_{\alpha} \mid \alpha \in A\right\}$. By definition S^{*} is a complete orthonormal set.

2. Trigonometric Polynomials and $L^{2}(T)$

Throughout this section we set T equal to the unit circle centred at 0 in \mathbb{C}, i.e.

$$
T=\{z \in \mathbb{C}| | z \mid=1\}
$$

By a periodic function g on \mathbb{R} we mean a function g which is periodic with period 2π, i.e. g satisfies $g(t+2 \pi)=g(t)$ for every $t \in \mathbb{R}$. We identify functions on T with periodic functions on \mathbb{R} in the usual way. In other words, if $e: \mathbb{R} \rightarrow T$ is the usual $\operatorname{map} t \mapsto e^{i t}$, then a function f on T gets identified with $g=f \circ e$. In fact we will often write $f(t)$ for $f\left(e^{i t}\right)$, so that the same symbol is used for the function on T as well as its "lift" to \mathbb{R}. It is clear that every periodic function arises from a function on T in a unique way.
2.1. The space $L^{2}(T)$. A measurable function on T will be (for us) a function such that the corresponding periodic function is Lebesgue measurable \mathbb{R}. It is not hard to see the following (though we will probably not use it). On $\mathscr{B}(T)$ one has the arc-length measure $d \theta$. Complete $\mathscr{B}(T)$ with respect to this measure to get a σ-algebra $\mathscr{L}(T)$. Call the members of $\mathscr{L}(T)$ Lebesgue measurable sets in T. These are the same as subsets $S \subset T$ such that $e^{-1}(S) \in \mathscr{L}(\mathbb{R})$. Then a measurable function on T is the same as an $\mathscr{L}(T)$-measurable function.

On $(T, \mathscr{L}(T))$ we have the so-called Haar measure μ, namely, with m the usual Lebesgue measure on \mathbb{R} :

$$
\begin{equation*}
\mu(E)=\frac{1}{2 \pi} m\left(e^{-1}(E) \cap[-\pi, \pi]\right) \quad(E \in \mathscr{L}(T)) \tag{2.1.1}
\end{equation*}
$$

For $p \in[1, \infty]$, set

$$
\begin{equation*}
L^{p}(T):=L^{p}(\mu) \tag{2.1.2}
\end{equation*}
$$

In terms of periodic functions, for $1 \leq p<\infty, f \in L^{p}(T)$ if it is measurable and

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{[-\pi, \pi]}|f|^{p} d m<\infty . \tag{2.1.3}
\end{equation*}
$$

Of course, as usual, members of $L^{p}(T)$ are really equivalence classes of such f, the equivalence being "equal a.e. $[\mu]$ ".

We have the standard inner product and norm on $L^{2}(T)$ and we know it is a Hilbert space. The rest of this lecture is devoted to finding an orthonormal basis for $L^{2}(T)$.
2.2. Trigonometric polynomials. Consider the periodic functions u_{n} given by

$$
\begin{equation*}
u_{n}(t)=e^{i n t} \quad(t \in \mathbb{R}, n \in \mathbb{Z}) \tag{2.2.1}
\end{equation*}
$$

Since T is compact and the u_{n} are continuous on T, we have $u_{n} \in L^{\infty}(T)$ whence in $L^{2}(T)$. If $\|\cdot\|$ and \langle,$\rangle represents the norm and inner product in L^{2}(T)$, we have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|u_{n}\right|^{2} d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d t=1
$$

giving

$$
\begin{equation*}
\left\|u_{n}\right\|=1 \quad(n \in \mathbb{Z}) \tag{2.2.2}
\end{equation*}
$$

Similarly, since $\int_{-\pi}^{\pi} e^{k i t} d t=0$ for $k \in \mathbb{Z} \backslash\{0\}$, we have

$$
\begin{equation*}
\left\langle u_{n}, u_{m}\right\rangle=0 \quad(n, m \in \mathbb{Z}, n \neq m) \tag{2.2.3}
\end{equation*}
$$

Thus $\left\{u_{n} \mid n \in \mathbb{Z}\right\}$ is an orthonormal set in $L^{2}(T)$. In fact it is an orthonormal basis as we shall soon see.

A trigonometric polynomial is a finite sum of the form

$$
\begin{equation*}
f(t)=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n t+b_{n} \sin n t\right) \quad(t \in \mathbb{R}) . \tag{2.2.4}
\end{equation*}
$$

This can be re-written as

$$
\begin{equation*}
f=\sum_{n=-N}^{N} c_{n} u_{n}(t) \tag{2.2.5}
\end{equation*}
$$

From (2.2.5) it is clear that trigonometric polynomials are exactly the elements of the linear span of of the orthonormal set $\left\{u_{n} \mid n \in \mathbb{Z}\right\}$ where u_{n} are as in (2.2.1).

Definition 2.2.6. Let $f, g \in C(T)$. Define a function $f * g$ on \mathbb{R} formula

$$
f * g(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t-s) g(s) d s \quad(t \in \mathbb{R})
$$

Note that $f * g$ is periodic (since f is) and hence is a function on T. In fact $f * g \in C(T)$ (a simple exercise, using the uniform continuity of f on the compact space T, and is left to you), but we do not need this fact today. And later we will prove more general statements for a larger class of functions. What we need today is the following pair of simple observations.

Lemma 2.2.7. Let $f, g \in C(T)$.
(a) $f * g=g * f$.
(b) With u_{n} as in (2.2.1), we have

$$
f * u_{n}=\left\langle f, u_{n}\right\rangle u_{n} \quad(n \in \mathbb{Z})
$$

In particular, if g is a trigonometric polynomial then so is $f * g$.
Proof. For part (a), make the change of variables $s^{*}=t-s$, and use the fact that f and g are periodic to see that integrating the resulting integrand from $-\pi+t$ to $\pi+t$ is the same as integrating from $-\pi$ to π.

The following calculation (for $t \in \mathbb{R}$ and $n \in \mathbb{Z}$) which uses (a), proves (b).

$$
f * u_{n}(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) u_{n}(t-s) d s=e^{n t} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) e^{-n s} d s=\left\langle f, u_{n}\right\rangle u_{n}(t) .
$$

2.3. The heuristics of the Dirac delta function. The illustrates a heuristic which helps with the actual construction of a proof that $\left\{u_{n}\right\}$ is a complete orthonormal basis for $L^{2}(T)$. Those uninterested in heuristics can skip directly to the definition of the approximate identity $\left\{Q_{n}\right\}$ in Subsection ??

Part of the idea comes from the notion of the Dirac delta function introduced by Dirac in quantum mechanics. ${ }^{1}$ The periodic version of this is supposed to be a function $\delta(t)$ such that

- For every $-\pi \leq a<0<b \leq \pi$,

$$
\frac{1}{2 \pi} \int_{a}^{b} \delta(t) d t=1
$$

- $\delta(t)=0$ for $0<|t| \leq \pi$.

It is clear that there is no such function, for such a function (when restricted to $[-\pi, \pi]$) would be the Radon-Nikodym derivative of the Dirac delta measure δ_{0} with respect to the Lebesgue measure m. However, we know that $\delta_{0} \perp m$, and so $d \delta_{0} / d m$ does not exist, i.e. the Dirac delta function does not exist. That said it is a useful notion, and an important guide to our thinking. Suppose, for the sake of discussion, that $\delta(t)$ did indeed exist. If f is a periodic function, continuous at 0 , then in a small neighbourhood of $0, f$ is close to the constant function $f(0)$. In somewhat greater detail, given $\epsilon>0$, there exists $\gamma>0$ such that $|f(t)-f(0)|<\epsilon$ for $|t|<\gamma$. Now, by definition of $\delta(t)$, we must have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(t)-f(0)) \delta(t) d t=\frac{1}{2 \pi} \int_{-\gamma}^{\gamma}(f(t)-f(0)) \delta(t) d t \tag{*}
\end{equation*}
$$

and from our choice of γ

$$
\begin{equation*}
-\epsilon \frac{1}{2 \pi} \int_{-\gamma}^{\gamma} \delta(t) d t \leq \frac{1}{2 \pi} \int_{-\gamma}^{\gamma}(f(t)-f(0)) \delta(t) d t \leq \epsilon \frac{1}{2 \pi} \int_{-\gamma}^{\gamma} \delta(t) d t . \tag{**}
\end{equation*}
$$

Since $\frac{1}{2 \pi} \int_{-\gamma}^{\gamma} \delta(t) d t=1,(*)$ and $(* *)$ give us $-\epsilon \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(t)-f(0)) \delta(t) d t \leq \epsilon$, and since $\epsilon>0$ is arbitrary, we have:

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) \delta(t) d t=f(0)
$$

If g is the function $s \mapsto f(t-s)$, then according to $(\dagger), \frac{1}{2 \pi} \int_{-\pi}^{\pi} g(s) \delta(s) d s=g(0)$, yielding

$$
f * \delta=f
$$

Suppose further that δ can be approximated by trigonometric polynomial. Then according to Lemma $2.2 .7(\mathrm{~b})$, and $(\ddagger), f \in C(T)$ can be approximated (in some sense) by trigonometric polynomials, giving us a way of showing $\left\{u_{n} \mid n \in \mathbb{Z}\right\}$ is complete as an orthonormal set.

One can make all this rigorous in certain situations in a couple of ways. The function δ is to be interpreted as a distribution or a generalised function in the sense of Laurent Schwartz. ${ }^{2}$ See [VD] for more details.

[^0]2.4. A specific approximation to δ. Consider the sequence $\left\{Q_{n}\right\}$ of trigonometric polynomials given by
\[

$$
\begin{equation*}
Q_{n}(t)=c_{n}\left(\frac{1+\cos t}{2}\right)^{n} \quad(t \in \mathbb{R}, n \in \mathbb{N}) \tag{2.4.1}
\end{equation*}
$$

\]

where c_{n} are so chosen that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} Q_{n}(t) d t=1 \quad(n \in \mathbb{N}) \tag{2.4.2}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
Q_{n}(t) \geq 0 \quad(t \in \mathbb{R}, n \in \mathbb{N}) \tag{2.4.3}
\end{equation*}
$$

We wish to use the data $\left\{Q_{n}\right\}$ as a proxy for $\delta(t)$ in the sense that for $f \in C(T)$, $f * Q_{n} \sim f$ for $n \gg 0$. In fact we will show that $\lim _{n \rightarrow \infty}\left\|f * Q_{n}-f\right\|_{\infty}=0$ (see Lemma 2.4.6). One ideal (but non-acheivable) property of δ that we wish to replicate, perhaps weakly, is the property that $\delta(t)=0$ if t is non-zero in $[\pi, \pi]$. One obvious formulation is to require that "off a neighbourhood of 0 ", Q_{n} converges to 0 uniformly. In greater detail, here is the agenda. For $0<\gamma \leq \pi$, define

$$
\begin{equation*}
\eta_{n}(\gamma)=\sup _{\delta<|t| \leq \pi} Q(t) \tag{2.4.4}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \eta_{n}(\gamma)=0 \tag{2.4.5}
\end{equation*}
$$

for every $0<\gamma \leq \pi$.
Here are the graphs of $Q_{1}, Q_{2}, Q_{3}, Q_{4}$, and Q_{5}.

Note that the graphs get narrower, the maximum keeps increasing, while the areas under the curves remain constant at 1 . This is what forces $\eta_{n}(\gamma)$ to approach 0 as $n \rightarrow \infty$.

For greater intuition, here are the graphs of $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$, and Q_{6}.

Any sequence $\left\{Q_{n}\right\}$ satisfying (2.4.2), (2.4.3) and (2.4.5) (where η_{n} is defined by (2.4.4)) is called an approximate identity or a mollifier for functions on T.

The proof of (2.4.5) for the sequence in (2.4.1) is easy to prove. By the symmetry of $Q_{n},(2.4 .2)$ gives, for $n \in \mathbb{N}$,

$$
\begin{aligned}
1 & =\frac{c_{n}}{\pi} \int_{0}^{\pi}\left(\frac{1+\cos t}{2}\right)^{n} d t \\
& \geq \frac{c_{n}}{\pi} \int_{0}^{\pi}\left(\frac{1+\cos t}{2}\right)^{n} \sin t d t \\
& =\frac{2 c_{n}}{\pi(n+1)} .
\end{aligned}
$$

Thus

$$
c_{n} \leq \frac{\pi(n+1)}{2} \quad(n \in \mathbb{N})
$$

Let $\gamma \in(0, \pi]$ and fix $n \in \mathbb{N}$. By the symmetry of $Q_{n}, \eta_{n}(\gamma)=\sup _{[\eta, \pi]} Q_{n}(t)$. Since Q_{n} is decreasing on $[0, \pi], \eta_{n}(\gamma)=Q_{n}(\gamma)$. Thus

$$
\eta_{n}(\gamma)=Q_{n}(\gamma)=c_{n}\left(\frac{1+\cos \gamma}{2}\right)^{n} \leq \frac{\pi(n+1)}{2}\left(\frac{1+\cos \gamma}{2}\right)^{n}
$$

Since $0<\gamma \leq \pi$, therefore $0 \leq \cos \gamma<1$, whence $0<\frac{1+\cos \gamma}{2}<1$. It follows that $\eta_{n}(\gamma) \rightarrow 0$ as $n \rightarrow \infty$ for every $\gamma \in(0, \pi]$. This establishes (2.4.5).

The following Lemma shows that the data $\left\{Q_{n}\right\}$ does approximate the property of the Dirac delta function given in (\ddagger).

Lemma 2.4.6. Let $f \in C(T)$ and set $P_{n}=f * Q_{n}, n \in \mathbb{N}$, where $\left\{Q_{n}\right\}$ is as in (2.4.1). Then

$$
\lim _{n \rightarrow \infty}\left\|P_{n}-f\right\|_{\infty}=0
$$

Note: P_{n} are trigonometric polynomials (cf. Lemma 2.2.7(b)).
Proof. Pick $\epsilon>0$. Since T is compact, f is uniformly continuous, and hence there exists $\gamma>0$ such that $|f(t)-f(s)|<\epsilon$ whenever $|t-s|<\gamma$. For $t \in[-\pi, \pi]$ we therefore have

$$
\begin{aligned}
&\left|P_{n}(t)-f(t)\right|= \frac{1}{2 \pi}\left|\int_{-\pi}^{\pi}(f(t-s)-f(t)) Q_{n}(s) d s\right| \\
& \leq \frac{1}{2 \pi} \int_{-\gamma}^{\gamma}|f(t-s)-f(t)| Q_{n}(s) d s \\
& \quad+\frac{1}{2 \pi} \int_{\{\pi \geq|t| \geq \gamma\}}|f(t-s)-f(t)| Q_{n}(s) d s \\
& \leq \epsilon+2\|f\|_{\infty} \eta_{n}(\gamma) .
\end{aligned}
$$

This estimate is independent of t by our choice of γ and the definition of $\eta_{n}(\gamma)$. By (2.4.5) we can find N such that $\eta_{n}(\gamma) \leq \epsilon$ for $n \geq N$, and it follows that $\left\|P_{n}-f\right\|_{\infty} \leq 2 \epsilon$ for $n \geq N$. This proves the Lemma.
2.5. Completeness of the orthonormal set $\left\{u_{n} \mid n \in \mathbb{Z}\right\}$. We are now in a position to show that trigonometric polynomials are dense in $L^{2}(T)$.
Theorem 2.5.1. Trigonometric polynomials form a dense subspace of $L^{2}(T)$. In particular $\left\{u_{n} \mid n \in \mathbb{Z}\right\}$ forms a complete orthonormal set in $L^{2}(T)$.
Proof. According to Theorem 1.2.1 of Lecture 16, $C(T)$ is dense in $L^{2}(T)$, since T is compact. Therefore, given $\epsilon>0$, it is enough to show that for each $f \in C(T)$ there exists a trigonometric polynomial P such that $\|P-f\|<\epsilon$, where $\|\cdot\|$ is the norm in $L^{2}(T)$. Now for any $h \in C(T)$ we have,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|h|^{2} d t \leq\|h\|_{\infty}^{2} \frac{1}{2 \pi} \int_{-\pi}^{\pi} d t=\|h\|_{\infty}^{2}
$$

In other words

$$
\|h\| \leq\|h\|_{\infty}
$$

Let $f \in C(T)$. By Lemma 2.4.6 (see the "Note" after its statement) given $\epsilon>0$ we have a trigonometric polynomial P such that $\|P-f\|_{\infty}<\epsilon$. This means $\|P-f\| \leq\|P-f\|_{\infty}<\epsilon$, which is what we wished to show.

References

[R] W. Rudin, Real and Complex Analysis, (Third Edition), McGraw-Hill, New York, 1987.
[VD] G.van Dijk, Distribution Theory, De Gruyter, Berlin/Boston, 2013. (See also http://www.math.nagoya-u.ac.jp/ richard/teaching/s2017/Gerrit_2013.pdf.)

[^0]: ${ }^{1}$ The history actually goes back to Heaviside, a British Engineer, though Dirac used it in a deeper way.
 ${ }^{2}$ Sobolev laid some of the foundations in the 1930s before Schwartz reworked it in a systematic way in the late 1940s, an effort which won him the Fields Medal in 1950.

