
LECTURE 18

Date of Lecture: October 16, 2018

All vector spaces are over C.

1. Complete Orthonormal Sets

Throughout this section, H is a Hilbert space.

1.1. Last time we stated but did not prove the following theorem.

Theorem 1.1.1. Let {uα | α ∈ A} be an orthonormal set in H. Then the following
conditions are equivalent.

(a) {uα | α ∈ A} is a maximal orthonormal set in H.
(b) The linear span P of {uα | α ∈ A} is dense in H.
(c) For every x ∈ H we have

‖x‖2 =
∑
α∈A
|x̂(α)|2.

(d) For every pair of vectors x, y in H we have

〈x, y〉 =
∑
α∈A

x̂(α)ŷ(α).

Proof. Suppose (a) is true. If the linear span P of {uα | α ∈ A} is not dense in

H then Q = P
⊥ 6= 0, where P is the closure of P in H. We can therefore find

a vector u ∈ Q such that ‖u‖ = 1. It is clear that {uα | α ∈ A} ∪ {u} is also
an orthonormal set, contradicting the maximality of {uα | α ∈ A}. We have just
proved that (a) =⇒ (b).

Next assume (b) is true. Then (c) is an immediate consequence of Theorem 1.6.1
of Lecture 17.

Now assume (c). We have the polarisation identity (see Problem (4) of Quiz 2)
for any Hilbert Space (M, 〈·, ·〉M ) and for any x, y ∈M .

〈x, y〉M =
1

4

(
‖x+ y‖2M − ‖x− y‖2M + i‖x+ iy‖2M − i‖x− iy‖2M

)
.

Apply this to both the Hilbert spaces H and `2(A). Then (d) follows easily from
(c).

As for (d) =⇒ (a), suppose (d) is true and {uα | α ∈ A} is not a maximal
orthonormal set. Then there exists a vector u ∈ H, ‖u‖ = 1, such that such that
〈u, uα〉 = 0 for every α ∈ A. In particular this means û(α) = 0 for every α ∈ A.
By (d) this means for any x ∈ H,

〈u, x〉 =
∑
α∈A

û(α)x̂(α) = 0.

Thus u = 0 contradicting the fact ‖u‖ = 1. Thus (d) =⇒ (a). �
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Definition 1.1.2. An orthonormal set {uα | α ∈ A} in H is said to be a com-
plete orthonormal set for H or an orthonormal basis of H if it satisfies any of the
equivalent conditions of Theorem 1.1.1.

Theorem 1.1.3. If H is non-zero then it has a complete orthonormal set.

Proof. Since H 6= 0 it has a vector u of norm 1, and {u} is an orthonormal set in
H. Thus the collection A of orthonormal sets in H is non-empty. A has a natural
order given by inclusion of sets. If we have a chain S in A , say S = {Sλ | λ ∈ Λ}
where Λ is a totally ordered set, with Sλ1 ⊂ Sλ2 if λ1 ≤ λ2, then

S =
⋃
λ∈Λ

Sλ

is easily seen to be an orthonormal set. Thus by Zorn’s lemma A has a maximal
element S∗ = {uα | α ∈ A}. By definition S∗ is a complete orthonormal set. �

2. Trigonometric Polynomials and L2(T )

Throughout this section we set T equal to the unit circle centred at 0 in C, i.e.

T = {z ∈ C | |z| = 1}.
By a periodic function g on R we mean a function g which is periodic with period
2π, i.e. g satisfies g(t+ 2π) = g(t) for every t ∈ R. We identify functions on T with
periodic functions on R in the usual way. In other words, if e : R→ T is the usual
map t 7→ eit, then a function f on T gets identified with g = f ◦ e. In fact we will
often write f(t) for f(eit), so that the same symbol is used for the function on T as
well as its “lift” to R. It is clear that every periodic function arises from a function
on T in a unique way.

2.1. The space L2(T ). A measurable function on T will be (for us) a function
such that the corresponding periodic function is Lebesgue measurable R. It is not
hard to see the following (though we will probably not use it). On B(T ) one has
the arc-length measure dθ. Complete B(T ) with respect to this measure to get a
σ-algebra L (T ). Call the members of L (T ) Lebesgue measurable sets in T . These
are the same as subsets S ⊂ T such that e−1(S) ∈ L (R). Then a measurable
function on T is the same as an L (T )-measurable function.

On (T,L (T )) we have the so-called Haar measure µ, namely, with m the usual
Lebesgue measure on R:

(2.1.1) µ(E) =
1

2π
m

(
e−1(E) ∩ [−π, π]

)
(E ∈ L (T )).

For p ∈ [1, ∞], set

(2.1.2) Lp(T ) := Lp(µ).

In terms of periodic functions, for 1 ≤ p <∞, f ∈ Lp(T ) if it is measurable and

(2.1.3)
1

2π

∫
[−π,π]

|f |pdm <∞.

Of course, as usual, members of Lp(T ) are really equivalence classes of such f , the
equivalence being “equal a.e. [µ]”.

We have the standard inner product and norm on L2(T ) and we know it is a
Hilbert space. The rest of this lecture is devoted to finding an orthonormal basis
for L2(T ).
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2.2. Trigonometric polynomials. Consider the periodic functions un given by

(2.2.1) un(t) = eint (t ∈ R, n ∈ Z).

Since T is compact and the un are continuous on T , we have un ∈ L∞(T ) whence
in L2(T ). If ‖ · ‖ and 〈 , 〉 represents the norm and inner product in L2(T ), we have

1

2π

∫ π

−π
|un|2dt =

1

2π

∫ π

−π
dt = 1

giving

(2.2.2) ‖un‖ = 1 (n ∈ Z).

Similarly, since
∫ π
−π e

kitdt = 0 for k ∈ Z r {0}, we have

(2.2.3) 〈un, um〉 = 0 (n,m ∈ Z, n 6= m).

Thus {un | n ∈ Z} is an orthonormal set in L2(T ). In fact it is an orthonormal
basis as we shall soon see.

A trigonometric polynomial is a finite sum of the form

(2.2.4) f(t) = a0 +

N∑
n=1

(an cosnt+ bn sinnt) (t ∈ R).

This can be re-written as

(2.2.5) f =

N∑
n=−N

cnun(t).

From (2.2.5) it is clear that trigonometric polynomials are exactly the elements of
the linear span of of the orthonormal set {un | n ∈ Z} where un are as in (2.2.1).

Definition 2.2.6. Let f, g ∈ C(T ). Define a function f ∗ g on R formula

f ∗ g(t) =
1

2π

∫ π

−π
f(t− s)g(s)ds (t ∈ R).

Note that f ∗ g is periodic (since f is) and hence is a function on T . In fact
f ∗ g ∈ C(T ) (a simple exercise, using the uniform continuity of f on the compact
space T , and is left to you), but we do not need this fact today. And later we will
prove more general statements for a larger class of functions. What we need today
is the following pair of simple observations.

Lemma 2.2.7. Let f, g ∈ C(T ).

(a) f ∗ g = g ∗ f .
(b) With un as in (2.2.1), we have

f ∗ un = 〈f, un〉un (n ∈ Z).

In particular, if g is a trigonometric polynomial then so is f ∗ g.

Proof. For part (a), make the change of variables s∗ = t− s, and use the fact that
f and g are periodic to see that integrating the resulting integrand from −π + t to
π + t is the same as integrating from −π to π.

The following calculation (for t ∈ R and n ∈ Z) which uses (a), proves (b).

f ∗ un(t) =
1

2π

∫ π

−π
f(s)un(t− s)ds = ent

1

2π

∫ π

−π
f(s)e−nsds = 〈f, un〉un(t).

�
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2.3. The heuristics of the Dirac delta function. The illustrates a heuristic
which helps with the actual construction of a proof that {un} is a complete or-
thonormal basis for L2(T ). Those uninterested in heuristics can skip directly to the
definition of the approximate identity {Qn} in Subsection ??

Part of the idea comes from the notion of the Dirac delta function introduced
by Dirac in quantum mechanics.1 The periodic version of this is supposed to be a
function δ(t) such that

• For every −π ≤ a < 0 < b ≤ π,

1

2π

∫ b

a

δ(t)dt = 1.

• δ(t) = 0 for 0 < |t| ≤ π.

It is clear that there is no such function, for such a function (when restricted to
[−π, π]) would be the Radon-Nikodym derivative of the Dirac delta measure δ0
with respect to the Lebesgue measure m. However, we know that δ0 ⊥ m, and so
dδ0/dm does not exist, i.e. the Dirac delta function does not exist. That said it
is a useful notion, and an important guide to our thinking. Suppose, for the sake
of discussion, that δ(t) did indeed exist. If f is a periodic function, continuous at
0, then in a small neighbourhood of 0, f is close to the constant function f(0). In
somewhat greater detail, given ε > 0, there exists γ > 0 such that |f(t)− f(0)| < ε
for |t| < γ. Now, by definition of δ(t), we must have

(∗) 1

2π

∫ π

−π
(f(t)− f(0))δ(t)dt =

1

2π

∫ γ

−γ
(f(t)− f(0))δ(t)dt

and from our choice of γ

(∗∗) −ε 1

2π

∫ γ

−γ
δ(t)dt ≤ 1

2π

∫ γ

−γ
(f(t)− f(0))δ(t)dt ≤ ε 1

2π

∫ γ

−γ
δ(t)dt.

Since 1
2π

∫ γ
−γ δ(t)dt = 1, (∗) and (∗∗) give us −ε ≤ 1

2π

∫ π
−π(f(t) − f(0))δ(t)dt ≤ ε,

and since ε > 0 is arbitrary, we have:

(†) 1

2π

∫ π

−π
f(t)δ(t)dt = f(0).

If g is the function s 7→ f(t − s), then according to (†), 1
2π

∫ π
−π g(s)δ(s)ds = g(0),

yielding

(‡) f ∗ δ = f.

Suppose further that δ can be approximated by trigonometric polynomial. Then
according to Lemma 2.2.7 (b), and (‡), f ∈ C(T ) can be approximated (in some
sense) by trigonometric polynomials, giving us a way of showing {un | n ∈ Z} is
complete as an orthonormal set.

One can make all this rigorous in certain situations in a couple of ways. The
function δ is to be interpreted as a distribution or a generalised function in the
sense of Laurent Schwartz.2 See [VD] for more details.

1The history actually goes back to Heaviside, a British Engineer, though Dirac used it in a

deeper way.
2Sobolev laid some of the foundations in the 1930s before Schwartz reworked it in a systematic

way in the late 1940s, an effort which won him the Fields Medal in 1950.
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2.4. A specific approximation to δ. Consider the sequence {Qn} of trigono-
metric polynomials given by

(2.4.1) Qn(t) = cn

(
1 + cos t

2

)n
(t ∈ R, n ∈ N).

where cn are so chosen that

(2.4.2)
1

2π

∫ π

−π
Qn(t)dt = 1 (n ∈ N).

It is clear that

(2.4.3) Qn(t) ≥ 0 (t ∈ R, n ∈ N).

We wish to use the data {Qn} as a proxy for δ(t) in the sense that for f ∈ C(T ),
f ∗ Qn ∼ f for n � 0. In fact we will show that limn→∞ ‖f ∗ Qn − f‖∞ = 0
(see Lemma 2.4.6). One ideal (but non-acheivable) property of δ that we wish to
replicate, perhaps weakly, is the property that δ(t) = 0 if t is non-zero in [π, π]. One
obvious formulation is to require that “off a neighbourhood of 0”, Qn converges to
0 uniformly. In greater detail, here is the agenda. For 0 < γ ≤ π, define

(2.4.4) ηn(γ) = sup
δ<|t|≤π

Q(t).

We will show that

(2.4.5) lim
n→∞

ηn(γ) = 0.

for every 0 < γ ≤ π.
Here are the graphs of Q1, Q2, Q3, Q4, and Q5.

Note that the graphs get narrower, the maximum keeps increasing, while the areas
under the curves remain constant at 1. This is what forces ηn(γ) to approach 0 as
n→∞.

5



For greater intuition, here are the graphs of Q1, Q2, Q3, Q4, Q5, and Q6.

Any sequence {Qn} satisfying (2.4.2), (2.4.3) and (2.4.5) (where ηn is defined by
(2.4.4)) is called an approximate identity or a mollifier for functions on T .

The proof of (2.4.5) for the sequence in (2.4.1) is easy to prove. By the symmetry
of Qn, (2.4.2) gives, for n ∈ N,

1 =
cn
π

∫ π

0

(
1 + cos t

2

)n
dt

≥ cn
π

∫ π

0

(
1 + cos t

2

)n
sin t dt

=
2cn

π(n+ 1)
.

Thus

cn ≤
π(n+ 1)

2
(n ∈ N).

Let γ ∈ (0, π] and fix n ∈ N. By the symmetry of Qn, ηn(γ) = sup[η,π]Qn(t). Since

Qn is decreasing on [0, π], ηn(γ) = Qn(γ). Thus

ηn(γ) = Qn(γ) = cn

(
1 + cos γ

2

)n
≤ π(n+ 1)

2

(
1 + cos γ

2

)n
.

Since 0 < γ ≤ π, therefore 0 ≤ cos γ < 1, whence 0 < 1+cos γ
2 < 1. It follows that

ηn(γ)→ 0 as n→∞ for every γ ∈ (0, π]. This establishes (2.4.5).
The following Lemma shows that the data {Qn} does approximate the property

of the Dirac delta function given in (‡).
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Lemma 2.4.6. Let f ∈ C(T ) and set Pn = f ∗ Qn, n ∈ N, where {Qn} is as in
(2.4.1). Then

lim
n→∞

‖Pn − f‖∞ = 0.

Note: Pn are trigonometric polynomials (cf. Lemma 2.2.7 (b)).

Proof. Pick ε > 0. Since T is compact, f is uniformly continuous, and hence there
exists γ > 0 such that |f(t) − f(s)| < ε whenever |t − s| < γ. For t ∈ [−π, π] we
therefore have∣∣∣∣Pn(t)− f(t)

∣∣∣∣ =
1

2π

∣∣∣∣∫ π

−π
(f(t− s)− f(t))Qn(s) ds

∣∣∣∣
≤ 1

2π

∫ γ

−γ
|f(t− s)− f(t)|Qn(s) ds

+
1

2π

∫
{π≥|t|≥γ}

|f(t− s)− f(t)|Qn(s) ds

≤ ε+ 2‖f‖∞ηn(γ).

This estimate is independent of t by our choice of γ and the definition of ηn(γ).
By (2.4.5) we can find N such that ηn(γ) ≤ ε for n ≥ N , and it follows that
‖Pn − f‖∞ ≤ 2ε for n ≥ N . This proves the Lemma. �

2.5. Completeness of the orthonormal set {un | n ∈ Z}. We are now in a
position to show that trigonometric polynomials are dense in L2(T ).

Theorem 2.5.1. Trigonometric polynomials form a dense subspace of L2(T ). In
particular {un | n ∈ Z} forms a complete orthonormal set in L2(T ).

Proof. According to Theorem 1.2.1 of Lecture 16, C(T ) is dense in L2(T ), since T
is compact. Therefore, given ε > 0, it is enough to show that for each f ∈ C(T )
there exists a trigonometric polynomial P such that ‖P − f‖ < ε, where ‖ · ‖ is the
norm in L2(T ). Now for any h ∈ C(T ) we have,

1

2π

∫ π

−π
|h|2 dt ≤ ‖h‖2∞

1

2π

∫ π

−π
dt = ‖h‖2∞.

In other words
‖h‖ ≤ ‖h‖∞.

Let f ∈ C(T ). By Lemma 2.4.6 (see the “Note” after its statement) given ε > 0
we have a trigonometric polynomial P such that ‖P − f‖∞ < ε. This means
‖P − f‖ ≤ ‖P − f‖∞ < ε, which is what we wished to show. �
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