LECTURE 16

Date of Lecture: October 9, 2018

1. Measures on Locally compact Hausdorff spaces (again)

Throughout this section X is a locally compact Hausdorff space.
1.1. The space of continuous functions vanishing at oo.

Definition 1.1.1. The space Cy(X) is the space of continuous complex functions
on X vanishing at infinity with the supremum norm. In other words Cy(X) consists
of continuous functions f: X — C such that

K (f)={r e X ||f(z)| > ¢}

is compact for every € > 0, and for f € Cy(X), the norm of f is
([ flloo := sup [ f].

It is clear that if X = X U {oo} is the one point compactification of X, then
Co(X) is precisely the space of continuous functions on X which vanish at o0, for
any continuous complex function f on X such that K.(f) is compact for every
positive epsilon has a unique extension to X such that the value of the extension
at oo is zero. Since X is dense in the compact set X , the supremum of |f| over X
or X is the same.

It is easy to see that Cy(X) is a Banach space with this norm and C.(X) is a
dense subspace of Cy(X) (why and why?).

1.2. Approximation of L?(u) by continuous functions. Now suppose I is a
o-algebra containing #(X) and pu is a positive measure on (X, 9), satisfying the
following conditions:

(a) u(K) < oo for every compact K.

(b) p is outer regular.

(¢) The relation

w(E) =sup{u(K) | K C E,K compact}
holds for every open set E and every measurable E with pu((E) < oo.

Recall that measures arising from positive functionals on C.(X) satisfy these prop-
erties (Riesz Representation for positive functionals on C.(X)). In that case, in
addition to (a), (b), and (c¢), (9, u) is complete.

Theorem 1.2.1. For 1 < p < 0o, C.(X) is dense in LP(u).
Proof. Let S be the set of simple measurable functions s such that
u({w € X | s(2) #0}) < 0.
Then we know that S is dense in LP(u) (the completeness of 91 is not required for

this). Let s € S. Let € > 0 be given. By Lusin’s theorem, there exists g € C.(X),
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lg| < |s|eo such that g(x) = s(x) for every z € X except on a set of measure < e.
Let E = {g # s}. Then

s — gll7 = / s — glPdp < / (2lslloc)Pdis < 27| s]1Puc,
E E

which means [|s — g||, < 2[|s]cc€'/?. O

Remark 1.2.2. Even though Lusin’s theorem requires the measure to be com-
plete, a little thought shows that for Theorem 1.2.2 we do not require (901, 1) to be
complete. The proof works even without that requirement for S is dense in LP(u)

without that requirement and {g # s} is 9-measurable and hence 9M-measurable,
where 901 is the completion 9t with respect to u.

By a regular complex Borel measure we mean a complex measure on (X ) such
that |u| is regular.

Theorem 1.2.3. Let pu be a regular complex Borel measure on X such that

[E fdp=0  (f € Co(X)).
Then u = 0.

Proof. Since p is complex |u| is a finite measure. By hypothesis |u| is Borel and
regular. Let h be a measurable function such that |h| = 1 and dp = hd|u|. Then
by hypothesis

[ tdil =0 (7 € Cotx)),
E
Since C.(X) C Cp(X), the above gives, for every f € C.(X),

() = /X W~ F)dll

< /X o~ fldlul.

Since this is true for every f € C.(X), and since by Theorem 1.2.2 the last quantity
can be made as small as we wish by a suitable choice of f in C.(X), we conclude
that |u|(X) = 0. O

2. The Riesz Representation Theorem for Cy(X)*

In this section too X is a locally compact Hausdorff space. The point of this
section is to show that every bounded linear functional on Cp(X) is of the form
®, = [x(=)du for a unique complex regular Borel measure y and that the norm
of the functional ®,, is |u|(X).

2.1. Complex regular Borel measures as bounded functionals. Suppose u
is a complex Borel measure on X. Since elements of Cy(X) are bounded, and since
|u](X) < oo we see that f € L' (u) for every f € Co(X). The linear functional

‘I)H: Co(X) — C
given by f — [y fdu is bounded, for, with h = dpu/d|p| (recall that |h| = 1), we

have,
[ sl = | [ sma < [ 1 < Wl
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giving,
(2.1.1) [Pl < [pl(X).

We point out that the proof of (2.1.1) does not use regularity of u and so is true
for any complex measure p.

Now suppose in addition that pu is regular. If K is a non-empty compact set, we
can find f € C.(X) such that K < f. Then,

() < [ 7l = 8,07) < 1901 = 19,
Taking supremum over all compact sets K, and using the fact that |u| is regular,
we get |p[(X) < ||®,|. This together with (2.1.1) gives
(2.1.2) [Pl = |pl(X)

for regular complex Borel measures.

2.2. Positive functionals associated with elements of Cy(X)*. Let

D CO (X) —C
be a bounded linear functional. Let Cf(X) be the set of f € C.(X) such that
f>0. For f e CF(X) set
(2.2.1) A(f) = sup{|®(h)|: h € C.(X)}.
Lemma 2.2.2. Let f,g € CH(X) and let ¢ be a non-negative real number. Then
Af+9)=Af+Ag and Acf = cAf.

Proof. The relation Acf = cAf is clearly true since ® is linear. Suppose h € C.(X)
is such that |h| < f+g. Let V be the set of points = in X such that f(x)+g(xz) > 0.
Then V is an open set and clearly f(x) = g(z) =0 for x ¢ V. Set
h h
et “€Y) ok
hi(z) = g and ha(x) = g
0 (x ¢ V) 0 (x V)
Since |hi| < f on V and f vanishes on X \V, it is clear that h; € C.(X). Similarly
he € Co(X). Note that hy + ha = h, |h1| < f, and |ha| < g. We therefore have

|Ph| = |Phy + Phy| < |Phy| + |Phe| < Af + Ag.

(xeV)

This means

A(f+9) <Af+Ag.
On the other hand, given € > 0, we can find hy,hy € C.(X) such that |hy| < f,
|he| < g, and Af < |®hy| + € and Ag < |Phg| + €. Let o, j = 1,2, be complex
numbers such that a;®(h;) = |®(e;)|. Then

Af+Ag < |‘Ph1| + |(I)h2| + 2¢ = (P(Ozlhl + Ckzhg) +2e < A(f + g) + 2e.
Since € is an arbitrary positive number, we get
Af+Ag <A(f+g9).

The relation A(f + g) = Af + Ag follows. d

If f € C.(X) is real-valued than f* and f~ lie in Cf(X) and we set define

Af = AfT — Af~. If f is an arbitrary element of C.(X), and f = u + iv is the
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decomposition of f into its real and imaginary parts, define Af = Au + iAv. It is
quite straightforward to see that

A:C(X) —C
is linear. By construction it is a positive functional.

Lemma 2.2.3. Let A be the positive Borel measure associated to the positive func-
tional A on C.(X). Then A is a bounded functional and

AX) = [[A[l = [|®]].
In particular X is a finite measure, and hence regular.
Proof. Using the integral representation of A as A = [ (=) d\, we see that
[Af] < A(LfD)-
If f € Cc(X), then for every h € C.(X) such that |h| < |f| we have
|1 < (|®[l[|2]loo < (IR fllocs
giving Alf| < ||®||||f]lco. This means
A< 2o
whence A is a bounded linear functional and
Al < (2.

On the other hand, for f € C.(X) we have

[R(A) < ALFT< [IAN1Sf loo-
It follows that

[(@le.cx)ll < A]-

By Hahn-Banach ®|¢, (x) can be extended to a bounded linear functional on Co(X)
which preserves norms. However, C.(X) is dense in Cy(X). It follows that there is
only one bounded linear extension of ®|¢_(x), namely ®. Thus ||®| < [|A[| giving

[A] = [|]l.

Now, A\(X) is (by construction) the supremum of {Af | f < X}. Thus A(X) <
[IAll = ||®]]. In particular A is a finite measure. Now if f € C.(X), |f| < 1, we have

afl= [ gavs [nars [ 1=,
b's p's b's
giving ||A]| < A(X), whence A = A(X). d

2.3. The Riesz Representation Theorem for Cy(X)*. Here is the main theo-
rem of this section.

Theorem 2.3.1. Let X be a locally compact Hausdorff space. Then every bounded
linear functional ® on Cy(X) is of the form

&= [ ()

for a unique regular complex Borel measure p and in this case

1]} = [l (X).
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Proof. The assertion is that every ® € Cy(X)* is equal to @, for a unique (regular,
complex, Borel) p and that ||®,| = |©|(X). The uniqueness assertion is simply
Theorem 1.2.3 and the norm assertion is (2.1.2). Thus we only have to prove that
® = @, for some regular complex Borel measure p on X.

Let ® € Co(X)*. Let A and X be the associated positive linear functional on
C.(X) and the regular positive Borel measure as in Subsection 2.2. According to
Lemma 2.2.3, A is bounded and A is finite and regular. Now as a vector space,
C.(X) is a subspace of both Cy(X) as well of L*(\). The latter is true because \ is
a finite measure and all bounded measurable functions are therefore in L'()\). Now

[ sl < [ =il (e cux)

where [ -[|1,x is the standard norm on L' (X). Thus ®|¢,(x) is a bounded functional
on (Ce(X), [|-][1,1) of norm < 1. Let us write &' for ®|¢ (x) thought of as a bounded
linear functional on (C.(X), ||-|j1,A). Now ||®’|| < 1. By the Hahn-Banach Theorem
there is a bounded linear extension F of ® to L!()\), such that | F|| = ||®’||. Thus
|F|| < 1. Now we have seen that L'(\)* = L>°()), and hence there exists a unique
g € L>®(\) with ||g]leo < 1 such that

F(f) = /X fgdh  (fe L)

In particular we have
o) = [ foar (7 eCx)).

Since g € L*°()) and A is a finite measure, E — [, gdX defines a complex Borel
measure g on X and in our notation this is expressed as du = gdA. The above
equation can then be re-written as

P

c.x) =P,

Since both ® and ®,, are continuous on Cy(X) and C.(X) is dense in Cy(X) in the
I - oo norm, we get

(%) o=,

Ce(X)-

It remains to show that u is regular. From results in previous lectures, we know
that d|u| = |g| dA. We therefore have the chain of inequalities

() = /X gA > /X Foldr> [B(7),

for every f € C.(X) with || f]|ec < 1. Taking supremums we get

(1) |1l (X) = [|2]].
On the other hand (2.1.1), which does not require p to be regular, gives
() [l (X) < [[@pll-

From (%), (1), and (1), we get

|1l (X) = [|@]].
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Using Lemma 2.2.3 we get |u|(X) = A(X). Now |g| <1 a.e.[A] and hence 1 —g >0
a.e. [\]. But [ (1 —g)d\ = NX) — |u[(X) = 0. It follows that |g| = 1 a.e.[)].
Hence

lul = A
This proves that p is regular. [

Remarks 2.3.2. (i) If X is already compact, then Cy(X) = C(X) and the theorem
says that for a compact Hausdorff space C(X)* is the space of regular complex Borel
measures on X with norm given by the total variation of complex measures. The
original version of F.Reisz stated that the dual of C0,1] (with supremum norm)
is the space of right continuous functions a of bounded variation on [0,1] with
a(0) = 0, and with ||«|| given by the total variation of o (please refer to an earlier
HW problem for the definitions).

(ii) According to the Theorem on p. 2 of Lecture 14b, if o is a positive measure
on a measurable space and p is a complex measure on the same space such that
dp = gdo for some g € L'(0), then [p|(E) = [, |g|do. In particular

(%) [l (X) = llgll1.0-

Examples 2.3.3. 1) Suppose A is a non-empty set. For simplicity, assume A is
countable. If f is a function on A, it is common to write f, as well as f(a) for
the value of f at a € A, and often the function f is written as {f,} or represented
by standard variants like {fs,}sca. The space ¢P(A) is defined as LP(#) where
#(= #4) is the counting measure on (4, #(A)). For p > 1, the symbol ||f||,
for f = {fs}: A — C has the usual measure-theoretic meaning for the measure
space (4, 2(A),#), namely || fll, = { [y [P}/ = {Xpen LFPP for 1 < p < oo,
and || fllco = supgeca{lfal}. Every complex measure p on (A, &2(A)) is absolutely
continuous with respect to # because #(S) = 0 if and only if S = (. The Radon-
Nikodym derivative dyu/d# is the clearly the function g* given by g# = u({a}).
Indeed, [ g'd# =3 cpgt = .cpi({a}) = p(E). This shows that {g¥} is in
1 (A), since pu(E) € C for every E C A and the specific arrangement of elements
of E does not affect the sum Y . g¥. Conversely, given g = {go} € (*(4), it
is the Radon-Nikodym derivative (with respect to #) of the complex measure fi4
on A given by du, = gd#. Moreover gts = g, and pgn = p. The formula (x) in
Remarks 2.3.2 shows that

() [l (X) = llg"[lx-

If A =N, the convention is to write £? instead of ¢P(N).

2) In 1) above, there were no topological considerations. Now let X = N be
given the discrete topology and let X =Nu {o0} be the one point compactification
of N. All complex measures on X and X are regular, since every open set in
either is clearly o-compact. Recall (from HW-6) that ¢ is the closed subspace of
£°° consisting of convergent sequences, and ¢y the closed subspace of £°° consisting
of sequences converging to zero. Convergent sequences f = {f,} are precisely
the functions which can be extended to a continuous function on X with foo =
limy, o0 frn. Thus ¢ = C’()A() Similarly ¢y = Co(X). We can regard ¢q as the set of
clements f in C(X) such that foo = 0. We point out that C(X) = Cy(X) since X
is compact.
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By the Riesz Representation Theorem for Co(X)* and Co(X)*, and the discus-
sion in Example 1), we have ¢* = ¢}(NU {oo}) and ¢ = ¢! (these are canonical
isometric identifications, which is why we have used the equality sign). The bounded
functional on ¢ associated to g € ¢1(NN {oo}) is

{fu} (nlingo Jn)Goo + Z JnGn-

neN

Similarly the bounded functional on ¢y associated to h € £ is
{fn} = >l

This can be checked by going through the various identifications made.

3) Using the example from 2), since X and X have the same cardinality, the space
1 (NU{oo}) is isometrically isomorphic to £. One such isomorphism is g + h, with
hi = goo and hy, = gn_1, for n > 2.* This identifies ¢* with ¢'. The natural map
c¢* — ¢ (see HW-6) under these identifications translates to the endomorphism
P: 0! — (! given by the “left shift operation” {a,} — {b,} with b, = a,1.

3) Continuing with the above, a complex measure fi on X can clearly be decom-
posed as
b=+ adss
with p concentrated on X, do the Dirac measure at oo, and a € C. Conversely
any such choice of 1 and « gives us a measure ji on X via the above formula. The
measure u can be regarded as a measure on X. It is easy to see that the natural
map ¢* — ¢ can be identified with g + ads — p.
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