Lemma: Let
$$\mu$$
 be σ -fivilte, $\rho \in \mathbb{I}(\mu)$, g the conjugate exponent to ρ , and
 g an element in $L^{0}(\mu)$. Let $\mathfrak{F}_{g}: L^{p}(\mu) \longrightarrow \mathbb{C}$ be the bounded himon
functional $f \mapsto \mathcal{J}_{X} f g d\mu$ (see Example 2 above). Then $\| \mathfrak{F}_{g} \| = \| g \| g$.
 \mathfrak{I}_{n} particular, this map $L^{0}(\mu) \longrightarrow L^{p}(\mu)^{X}$ given by $g \mapsto \mathfrak{F}_{g}$ is an
injective map.
 $\mathfrak{F}_{oof}:$

We have already seen that
$$\|\overline{g}_{g}\| \leq \|g_{g}\|_{g}$$
. Suppose $p=1$ (so that $q=a$). Bick $f \in L^{1}(h)$
s.t. $0 \leq f \leq a$ (e.g., the w, $p \leq w \leq 1$, q an earlier Lemma). Then
 $\|\int_{E} fgd_{\mu}\| \leq \overline{g}_{g}(f \times \varepsilon) \leq \|\overline{g}_{g}\| \int_{E} fd_{\mu}\mu$, $\forall \in EM$. By the provides Lemma,
 $\|g\|_{b} \leq \|[\overline{g}_{g}\||$. So the assention is time other $p=1$.
Suppose $1 \leq p \leq \infty$. For some no'ble d , $|u|=1$, we have $|g|=ug$.
Let $f = d |g|^{q-1}$. Then $|f|^{p} = |g|^{(q-1)p} = |g|^{q}$, whence $\|f\|_{p} = \|g\|_{q}^{q}$.
Also $\overline{\Phi}_{q}(f) = \int_{X} (u |g|^{q-1}) g d\mu = \int_{X} |g||^{q} d\mu = \|g\|_{q}^{q}$. Thus
 $\|g\|_{q}^{q} = \overline{F}_{g}(f) \leq \|\overline{\Phi}_{g}\| \| \|f\|_{p} = \|\overline{F}_{g}\| \|g\|_{q}^{q}$, i.e.
 $\|g\|_{q}^{q} \leq \|g\|_{q}^{q+p} \|\overline{G}_{q}\|$
 \Im hell $q = 0$, there is nothing to prove since in that case $\overline{F}_{g}=0$.
Otherwise we have $\|g\|_{q}^{q-q} \leq \|\overline{\Phi}_{g}\|$, $v \in \mathbb{N}$ a non-negative

real constant, and $g \in L'(\mu)$ such that $|\int_X fg d\mu| \leq M \cdot \|f\|_p$ for every $f \in L^{\infty}(\mu)$. Then $\|g\|_q \leq M$ where q is the exponent

anyingute to p. (In particular
$$g \in L^{6}(\omega)$$
.)
Prof.:
Suppose p=1. Let EGBN and ad $f= \mathcal{X}_{E}$. Then $f\in L^{\infty}(\mu)$ and $\|f\|_{1}=\mu(E)$.
Hence $|\int_{E} g d\mu_{1}| = |\int_{X} fg d\mu_{1}| \leq M \cdot \mu(E)$. By Thus 1.40 Budin (see
Taterial 2.) we get $|g| \leq M a.e.$, whence $\|g\|_{b} \leq M$ and we are
done in this case.
Nos suppose $|cp < \infty$. Let $En = f \cdot |g| \leq nf$. We know these exists
Where a , $|u|=1$ s.t. $|g|= ag$. Let $f = a \cdot |g|^{q-1} \mathcal{X}_{En}$. Then $f\in L^{\infty}$.
Moreorea $|f|^{2} = |g|^{2} \mathcal{X}_{En}$, whence $\|f\|_{p} = (\int_{En} |g|^{4} d\mu)^{\frac{1}{2}}$. Moreonen,
 $fg = |g|^{2} \mathcal{X}_{En}$. Hence
 $\int_{En} |g|^{2} dn = \int_{X} fg d\mu \leq M \cdot \|f\|_{p} = M \left\{ \int_{En} |g|^{2} d\mu \right\}^{\frac{1}{2}}$.
This means $\exists N \in \mathbb{N}$ s.t. $\int_{En} |g|^{2} d\mu > 0$ for $n \geq N$. Hence
 $f \int_{En} |g|^{4} dn \frac{1}{4} \leq M$
Let $n \longrightarrow a$ and we MCT to get the required vanilt. gred
Theorem: Let μ be σ -pinite. Let $p \in [1,\infty)$ and let q be the bounded

 $\overline{F}_{g}f = \int_{X} fg d\mu$ (fel'(w)).

 $L^{q}(\mu) \longrightarrow (L^{r}(\mu))^{*}$

linear frontional described above, namely

Then the linear map

given by
$$g \mapsto g$$
 is an insurtic isomorphism , i.e. it
is one-to-me, onto, and $\| \bar{\Phi}_{g} \| = \| g \|_{g}$ for every $g \in L^{q}(\omega)$.
For $g :$
We have already seen that $\bar{\Phi}_{g}$ is bounded and $\| \bar{\Phi}_{g} \| = \| g \|_{f}$
for every $g \in L^{q}(\omega)$. This means that the map $L^{q}(\omega) \longrightarrow U(\omega)^{*}$
griven by $g \mapsto \bar{\Phi}_{g}$, is injective. On task is to show that for every
 $g \in L^{q}(\omega)^{*}$ there exists a $g \in L^{q}(\omega)$ such that $\bar{\Phi} = \bar{\Phi}_{g}$.
First assume μ is first π , $\mu(\chi) < \infty$. Let
 $\bar{\mathfrak{F}}: L^{q}(\omega) \longrightarrow \bar{\mathfrak{C}}$ be a bounded hinces functional. Since μ is
finite $\chi_{E} \in L^{q}(\mu)$ for every $E \in M$. Define
 $\lambda(E) = \bar{\mathfrak{F}}(\chi_{E})$.
Note that λ is finitely additione, for, if $E = E_{1} \cup E_{2}$, where
 $E_{1}(E_{2} = \Phi)$, $E_{1}E_{2} \in M$, then $\chi_{E} = \chi_{E_{1}} + \chi_{E_{2}}$. Now support
 $E_{3}E_{2}, ..., E_{n}, ...$ are pairwise disjoint where sets with $\overline{G} = \bigcup_{E_{n}} L$.
Let $S_{n} = \bigcup_{E_{n}} E_{n}$ and $T_{n} = E - S_{n}$, we lis. Since $T_{n} \downarrow \Phi$,
and μ is first we have $\lim_{E_{n}} \mu(T_{n}) = 0$. For-
 $\| \chi_{E} - \chi_{S_{n}} \|_{F} = \left(\int_{X} \chi_{T_{n}} d\mu \right)^{\chi_{F}}$
 $= \mu(T_{n})^{\chi_{F}} \longrightarrow D$ as $n \to \infty$.

It follows that
$$\overline{\Phi}(X_{n,1}) \longrightarrow \overline{\Phi}(X_{E})$$
 as $n \rightarrow \infty$.
This means $\overrightarrow{A} \mid E_n \rangle = \chi(E)$.
Thus \overline{A} is a complex measure. If $\mu(E)=0$,
then $\chi_E = 0$ a.e., whence $\lambda(E)=0$, and hence
 $\overline{A} \subset \mu$. By the Padon extendence $\lambda(E)=0$, and hence
 $\overline{A} \subset \mu$. By the Padon extendence $\lambda(E)=0$, and hence
 $\overline{A} \subset \mu$. By the Padon extendence $\lambda(E)=0$, and hence
 $\overline{A} \subset \mu$. By the Padon extendence $\lambda(E)=0$, and hence
 $\overline{A} \subset \mu$. By the Padon extended in $U(\mu)$ (once again uning
the fault that μ is finte), we have for $\overline{a} = \overset{-}{\underline{A}} a_i \chi_{E_i}$
(Ai $\in M$, $\overline{v}=1$, $Ai \cap A_i = 0$, $i \neq j$)
 $\overline{\Phi}(a) = \overset{-}{\underline{\Sigma}} a_i \overline{\Phi}(\chi_{A_i}) = \overset{-}{\underline{\Sigma}} a_i \lambda(E_i)$
 $= \overset{-}{\underline{X}} a_i \int_X \chi_{E_i} g d\mu$
Thus $\overline{\Phi}(a) = \int_x g d\mu$ for any simple wible \underline{a} .
Since μ is finite, $L^{\infty}(\mu) \subset L^{0}(\mu)$. Moreonen
 $\|f\|_{p} \leq \|f\|_{0} \mu(\infty)^{\gamma_{p}}$ ($f \in L^{\infty}(\omega)$)
and hence the inclusion map
 $L^{\infty}(\mu) \subset \rightarrow L^{0}(\mu)$
is continuous.
Let $f \in L^{\infty}(\mu)$. Since simple wible functions one

dense in L^o(e), we can find a sequence of aningle m'ble functions { high s.t. || Sn -fllo -> 0 as n -> 00. This means, from what we just said, || In-fllo -> 0 as n ->00. Nono in being simple.

$$\overline{F}(kn) = \int_{X} kn g d\mu$$
Is $k = -30$, the LS converges to $\overline{F}(4)$, when $k = -5$ in L⁰(N) and \overline{F} is a bild
functional on L¹(N). The R.S. converges to $\int_{X} fg d\mu$ since $A - 5 \stackrel{\circ}{f}$ in L⁰(N)
and $g \in L^{1}(N)$ too that $\overline{f} \mapsto \int_{X} fg d\mu$ is a bild functional on L⁰(N).
Thus

$$\overline{T}(F) = \int_{X} fg d\mu \quad (f \in L^{0}(N)) \quad (1)$$
Since $\overline{F} \in L^{0}(N)^{2}$ and $L^{0}(N) \subset L^{1}(N)$ we get

$$\left|\int_{X} fg d\mu\right| = |\overline{T}(F)| \leq ||\overline{T}|| ||\overline{T}||_{p} \quad (f \in L^{0}(N)).$$
From the Proportion we get
 $g \in L^{1}(N)$ and $||g||_{\overline{T}} \leq ||\overline{T}||$.
Now both asides $f(1)$ define continuous functionale on L⁰(N).
Since μ is a finite measure $L^{0}(N)$ is dense in L¹(N).
Since μ is a finite measure $L^{0}(N)$ is dense in L¹(N).
Since μ is a finite measure $L^{0}(N)$. Thus the two gives $q(1)$
agree on L¹(N), i.e.,
 $\overline{T}(f) = \int_{X} fg d\mu \quad (f \in L^{1}(N)).$
We are therefore done when μ is a finite measure.
 $\frac{1}{N}\mu$ is not finite, since it is $\overline{T} - finite$ (by our
dynatices), there exists to $\overline{T} + finite measure.$
There are $f(N)$, is a finite measure.
 $\frac{1}{N}\mu$ is not finite, since it is a finite measure.
 $\frac{1}{N}\mu$ is not finite, since $\frac{1}{N}$ is a finite measure.
 $\frac{1}{N}\mu$ is not finite, since $\frac{1}{N}$ is a finite measure.
 $\frac{1}{N}\mu$ is not finite, since $\frac{1}{N}$ is a finite measure.
 $\frac{1}{N}\mu$ is not finite, $\frac{1}{N}$ is $\frac{1}{N}$ if $\frac{1}{N}$ to $\frac{1}{N}$ is $\frac{1}{N}$.
 $\frac{1}{N}$ is not finite $\frac{1}{N}$ is a finite measure.
 $\frac{1}{N}\mu$ is not finite, $\frac{1}{N}$ is $\frac{1}{N}$ if $\frac{1}{N}$ is $\frac{1}{N}$ is $\frac{1}{N}$.
 $\frac{1}{N}$ is $\frac{1}{N}$ is $\frac{1}{N}$ in $\frac{1}{N}$. This
 $\frac{1}{N}$ is $\frac{1}{N}$ is $\frac{1}{N}$ is $\frac{1}{N}$. This
 $\frac{1}{N}$ is $\frac{1}{N}$ is $\frac{1}{N}$. The $\frac{1}{N}$ is $\frac{1}{N}$ is $\frac{1}{N}$.
 $\frac{1}{N}$ is $\frac{1}{N}$ is $\frac{1}{N}$. This $\frac{1}{N}$ is $\frac{1}{N}$ is $\frac{1}{N}$. This

$$\begin{split} \widetilde{\P}(F) &= \operatorname{\mathfrak{P}}(w^{\vee}F). \quad \operatorname{Then} \|\widetilde{\P}\| = \|\widetilde{\P}\|. \quad \operatorname{Suice} \widetilde{\mu} \text{ is finite}, \\ we have a unique Gel9(\widetilde{\mu}) \quad \operatorname{such} that \quad \widetilde{\P}(F) &= \int_{X} F6d\widetilde{\mu} \\ \text{and} \quad \|\operatorname{Gll}_{\mathfrak{g},\widetilde{\mu}} &= \|\widetilde{\P}\| = \|\widetilde{\P}\|. \quad \operatorname{\mathfrak{A}}_{\mathfrak{g}} p = 1, \quad \operatorname{set} g = \operatorname{Gel}_{\mathfrak{g}} \operatorname{\mathfrak{A}}_{\mathfrak{g}} \text{ lepes} \\ \operatorname{set} g &= w^{1/4} \operatorname{G}_{\mathfrak{g}}. \quad \operatorname{Then} g \in L^{9}(\mu) \quad \operatorname{and} \|g\|_{\mathfrak{g}} = \|\operatorname{Gll}_{\mathfrak{g},\widetilde{\mu}} = \|\widetilde{\P}\|. \\ \operatorname{Moeconer} \operatorname{for} f \in L^{9}(\mu) \\ \\ \operatorname{\mathfrak{F}}(f) &= \widetilde{\mathfrak{F}}(w^{-\sqrt{6}}f) = \int_{X} w^{-\sqrt{6}} f \operatorname{G}_{\mathfrak{g}} \widetilde{\mu} \\ \end{split}$$

$$= \int_{X} \omega^{-1/4} f \omega^{-1/4} g d\mu \quad (\omega^{-1/4} = 1, 4 q = a).$$

$$= \int_{X} \omega^{-1/4} \int_{X} f g d\mu$$

$$= \int_{X} f g \omega^{-1} d\mu$$

$$= \int_{X} f g d\mu$$

$$= \int_{X} f g d\mu$$

$$= \oint_{g} (f).$$
Thus $\Phi = \Phi_{g}$, be have already seen $\|\Phi\| = \|g\|_{\Phi}$. q.e.d.