October 4, 2018

Lecture 15

Throughout (X, M, M) is a mille space with na positive measure. Dual spaces of LP (M)

Pecall (from HW assignmente, quizzes, earlier entire, Intorials) that if N is a normed linear space than a bounded linear functional I: N→C is a linear functional for which there is a constant MZO such that |IX| ≤ M.NXII. (XGN) The norm of \$, written NFI, it the smallest M such that

the above condition holds. Thus if we have an M as above, then by defn, lig li ≤ M.

$$\frac{|\overline{\phi}|| = \sum_{x \neq y} |\overline{\phi}(x)| = \sum_{x \neq y} |\overline{\phi}(x)|$$

Examples 1. As we some in the mid-term exam, $(l')^* = l^\infty$ 2. Let 1 = p = 00. Let q be the conjugate exponent (so that

$$f + f = 1, \text{ with the understanding that if $p = 1, q = 0$ and
if $p = 0$ then $q = 1$. We have seen that if $f \in U(n)$ and

$$g \in L^{2}(n) \text{ them } f g \in U(n) \text{ and}$$

$$f g \in L^{2}(n) \text{ so fixed and}$$

$$f g = L^{2}(n) \text{ so fixed and}$$

$$f$$$$

of I= ta, b], Osa < b < as, and id_ is the identity function on I (i.e. id_ (b)=t, teI) then clearly on -> il _ uniformly on I. This means if f:X -> to, o] is bounded then and In= quof, then an -> f uniformly. We have these proved by breaking up f as f=f+-f-, and applying the above argument to ft and f-): Theorem : The set of measurable simple functions on X is dense in L' (u). We have already seen that the ed S of simple functions s on X such that u({ s = 0}) <00 is dense in l'(n) for 1 = p < 00. Lemma : Suppose q is a complex m'ble function, f E L'(u), O < f(x) < 0, 4 2 EX, and M > O a constant, and suppose gfel'(u) and Je gfdn < M Je fdn (EEM). Then g E L* (u) and lgll ~ M. Prof: Let J be the measure quien by do = fdy. Since fel'(n), and f=0, o is finite measure. However o is equivalent to ju, ie., o <= p and p <= o, for dp= = f do. Now the gries condition is equivalent to: <u>| Jegde| EM</u> (EEM 12. ~(E) > 0).

This means 1g1 5 M a.e. [5] (Thun 1.40 Rudin). Since µ cco, we are done. q-c.d.

Lemma: Let
$$\mu$$
 be σ -finite, $\rho \in \mathbb{I}_{1,\infty}$), q the conjugate exponent to p , and
 g an element in $L^{q}(\mu)$. Let $\mathfrak{F}_{q}: L^{p}(\mu) \longrightarrow \mathbb{C}$ be the bounded himon
functional $f \mapsto \mathfrak{f}_{x} \mathfrak{f}_{g} d\mu$ (see Example 2 above). Then $\|\mathfrak{F}_{q}\| = \|g\|_{q}$.
 \mathfrak{I}_{n} particular, the map $L^{q}(\mu) \longrightarrow L^{p}(\mu)^{*}$, $g \mapsto \mathfrak{F}_{q}$, is injective.
 $\mathfrak{F}_{roof}:$

We have already seen that
$$\|\overline{\mathfrak{sg}}\| \leq \|g\|_{\mathfrak{g}}$$
. Suppose $p=1$ (so that $g=\infty$). Poile $f \in L^{1}(n)$
s.t. $0 \leq f < \infty$ (e.g., the w , $0 < w < 1$, η an earlier Lemma). Then
 $|\int_{\mathfrak{E}} fg d\mu_{n}| \leq \overline{\mathfrak{g}}_{\mathfrak{g}}(f \times \varepsilon) \leq \|\overline{\mathfrak{sg}}\| \int_{\mathfrak{E}} f d\mu_{n}$, $\forall \in \in \mathbb{N}$. By the provides Lemma,
 $||g||_{\mathfrak{so}} \leq ||\overline{\mathfrak{gg}}||$. So the advention is time when $p=1$.

Suppose
$$|\leq p \leq \infty$$
. For some norble d, $|a|=1$, we have $|g|=ag$.
Let $f = d |g|^{q-1}$. Then $|f|^p = |g|^{(q_{f}-1)p} = |g|^{q}$, whence $||f||_{p} = ||g||_{q}^{q}$.
Also $\Phi_{q}(f) = \int_{X} (a |g|^{q-1}) g d\mu = \int_{X} |g|^{q} d\mu = ||g||_{q}^{q}$. Thus
 $||g||_{q}^{q} = \Phi_{g}(f) \leq ||\Phi_{g}|| \cdot ||f||_{p} = ||\Phi_{g}|| \cdot ||g||_{q}^{q}$, i.e.
 $||g||_{q}^{q} \leq ||g||_{q}^{q} ||\Phi_{g}||$
 $g(||g||_{q}^{q} = 0$, there is nothing to prove since in that one $\Phi_{g}=0$.
Otherwise we have $||g||_{q}^{q-q/p} \leq ||\Phi_{g}||$, i.e. $||g||_{q} \leq ||\Phi_{g}||$.
 $a.e.d.$

Another may of converting
$$\sigma$$
-finite situations to finite situations:
Suppose μ is positive and σ -finite on (X, M) . Let $X = \bigcup_{n=1}^{U} E_{n}$,
 $E_{n} \in M$, $n \in IU$, with $\mu(E_{n}) < \infty$ $\forall n \in IU$. Let
 $\omega_{n} = \frac{1}{2^{n} (I + \mu(E_{n}))} X_{E_{n}}$.