Let EEM be s.t.
$$|\mathcal{M}(E) > 0$$
. Then

$$\left| \begin{array}{c} \bot \\ |\mathcal{M}(E) \end{array} \right| = \frac{|\mathcal{M}(E)|}{|\mathcal{M}(E)} \leq 1,$$

$$|\mathcal{M}(E) \end{array}$$

ie.
$$tim(E) \int E h d|M| \in \overline{\Delta}$$
, where $\overline{\Delta}$ is the unit disc
in C , i.e. $\overline{\Delta} = \{3 \in C \mid 13 \mid \leq 1\}$. Since $|M|$ is a finite measure
according to the results in Tetorial 2 (posted on moodle) or The 1.40
of Eudin, h takes values in $\overline{\Delta}$ are [Jui]. This gives
 $|H| \leq 1$ are. $[Jui] \longrightarrow (E)$
we claim $Hh|=1$ are. To see these consider $A_{T} = \{ Hh| < T \}$ for
 $T > 0$. Let $\{E_{j}\}$ be a constable m² ble points those of A_{T} . Then
 $\sum_{j} |Ju(E_{j})| = \sum_{j} |\int_{E_{j}} h d|M| \leq \sum_{j} \int_{E_{j}} |h| d|M|$

$$\leq r |\mu| (Ar).$$

If r<1, the above implies jul (Ar)=0, which in turn means [h] ≥r a.e. [1,11] for every r<1. Thus [h] ≥1 a.e. [21]. In view of (+) above this means [h]=1 (after modifying on [11]-mill set). We thus have:

Prof:

We already know that h= d/ul has absolute value 1 a.e. [1m] Let B = { 1h1 = 1}. Then Jul (B) = 0. Redefine h so that h (x)=1 for R&B. g.e.d.

Theorem: Suppose
$$\mu$$
 is a positive measure on $\mathcal{M}_{g} \mathcal{B} \mathcal{L}'(\mu)$ and
 $\lambda(E) = \int_{E} g d\mu$ (EGM).

Then

$$lal(E) = \int_E lgldp.$$
 (EEM).

|lel=1 and dr=hd/rl. In other words

$$\int_E h dhl = \int_E g d\mu \qquad (EEM),$$
This means $\int_X sh dldl = \int_X g d\mu \text{ for every mille simple}$
function s on X. Since every bounded mille function is

the uniform limit of animple functions the gives, by DCT, that

$$J_X \neq h \ d|h| = J_X \neq g \ d\mu$$
 for every bdd mible function f .
Take $f = \overline{h} X_E$, where $\overline{E} \in \mathbb{N}$. Get
 $J_E \ d|d| = J_E \ h g \ d\mu$ ($\overline{E} \in \mathbb{N}$).
Thus $J_E \ h g \ d\mu = hl(E)$ $\forall E \in \mathbb{M}$. This means
 \overline{hg} is non-negative valued are $T\mu$. Hence $\overline{hg} = |\overline{hg}| = |g| \operatorname{sec}(J)$
This in turn gives
 $hl(E) = \int_E |g| \ d\mu$ ($\overline{E} \in \mathbb{N}$). que d .
The Halm Decomposition Theorem: Suppose μ is a $\overline{\sigma}$ -finite
extended signed measure. Then there exist sets A and B
in \mathbb{M} such that $A \cup B = X$, $A \cap B = \phi$ and such that
 $\mu^*(E) = \mu(A \cap E)$, $\mu^-(E) = \mu(B \cap E)$ ($\overline{E} \in \mathbb{N}$).
 $he = \frac{d\mu al}{d\mu}$, with $|h||=1$ exceptions πI and -1 .
Let $h = \frac{d\mu al}{d\mu}$, with $|h||=1$ exceptions πI and -1 .
Let $h = f_E = (J_F - I_F)$. It is clean that the
the theorem is true with the set of $\mu = \lambda - \lambda_2$ where
 λ_1 and λ_2 are pointive measures. Then $\mu^+ \leq \lambda_1$ and $\mu^- \leq \lambda_2$.

Proof:
Since
$$\mu \leq \lambda$$
, we have
 $\mu^+(E) = \mu(E \cap A) \leq \lambda$, $(E \cap A) \leq \lambda$, (E) area.

Remark: The minimality of the Jordan decomposition shown in
the last lecture bas another consequence. Suppose, as in the
Theorem,
$$d\lambda = g d\mu$$
 where $g \in L'(\mu)$ (g being "locally L'(h)" enough
actually), and say g is real-valued, so that λ is a signed measure.
Let τ and τ be the positive measures given by $d\sigma = g^+ d\mu$ and
 $d\tau = g^- d\mu$. Then $\lambda = \sigma - \tau$, whence $\sigma \neq \lambda^+$ and $\tau \neq \lambda^-$.
Let $g_1 = d\lambda^+$ and $g_2 = d\lambda^-$. Then $\sigma \neq \lambda^+ \Longrightarrow \int_{E} g^+ d\mu \neq \int_{E} g_1 d\mu$
 $\Psi \in EM$, whence $g^+ \neq g_1$ are $\tau_1 = 1$. Similarly $g^- \neq g_2$ are τ_1 . However
 $g^+ - g^- = g = g_1 - g_2$ whence, by the minimality of the decomposition $g = g^+ - g^-$ we
have $g^+ = g_1$, $g^- = g = g_1 - g_2$ and $\tau_2 = d\lambda^-$.

There are other ways of proving this, which are essentially similar.
For example, since
$$|g|d_{\mu} = d|d|$$
, we have $g_1 + g_2 = |g| = g^+ + g^-$,
a.e. $E_{\mu}J$. This coupled with $g_1 - g_2 = g = g^+ - g^-$ a.e. $E_{\mu}J$ forces
 $g_1 = g^+$ and $g_2 = g^-$ a.e. $E_{\mu}J$.

(b) There is a measurable function $h: X \longrightarrow Foo, or]$ such that

one of Jx ht dy or Jx ht dy in finite and

$$\lambda(E) = \int_{E} d_{e} d_{h}$$
.
Moreone $dx^{+} = bi d_{h}, dx^{-} = b d_{h}$ and $dbl = bb d_{h}$.
Prof.:
The prof is clear from the remark above. The or-finiteness of λ
(i.e., of bil) is used to break up X so $X = \bigcup_{n=1}^{N} En, bl (Eb) < so, n < 10,$
with En's being private disjoint. The usual laborger Eudon.
 $bibodyne applies to (\lambda_{1En}, h_{En}) giving the result. g.d.
Benoal: Here is the relationship between complex, signed, estended
erigned, finite, and positive measures.

CM > SM > FM
 $A \cap A$
ESM > FM
SMA PM = CMA PM = FM$

Integration with respect to a complex measure:
Let
$$\mu$$
 be a complex measure on (X, DN) . A mildle
function $f: X \longrightarrow C$ is said to be in $L^{1}(\mu)$ if it is in
 $L^{1}(\mu)$ and in this case, with $h = dh/d\mu$, we set
 $\int_{X} f d\mu = \int_{X} f h d|\mu|$.
Since $|fh| = |f|$ and $f \in L^{1}(\mu)$ does R.S. is a well-defined
complex number.
With this definition the relation
 $\mu(E) = \int_{X} X_{E} d\mu$ (EEM)
holde. Moreoner, using this definition, it is easy to see that
 $\int_{X} f X_{E} d\mu = \int_{E} (f|_{E}) d(\mu|_{E})$ (EEM).
The sight side is written in a less curbersone may as
 $J_{E} f d\mu$.