$$\underbrace{\operatorname{Complex Meanure}}_{\mu:M} \xrightarrow{} \mathcal{C}$$
Let (X,M) be a measurable space. A map

$$\mu:M \longrightarrow \mathcal{C}$$
is called a complex measure on M (or on X , or on (X,M))
if $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \overset{\sim}{\sum} \mu(E_n)$ for any constable sequence
 $E_5 E_2, \dots, E_n, \dots$ of principle disjoint measurable rete.
Note two things:
1. Since the L.S. of the equality
 $\mu(\bigcup E_n) = \overset{\sim}{\sum} \mu(E_n)$
is independent of the amongement of the sete
 $E_5, \dots, E_n, \dots, E_n, \dots, E_n$, therefore the R.S. is inversiont
under re-arrangement of terms. This means
the sum $\overset{\sim}{\sum} \mu(E_n)$ is abridually convergent.
2. If we set $E_n = \Phi$, $n \in \mathbb{N}$, then we get
 $\mu(\Phi) = \overset{\sim}{\sum} \mu(\Phi)$ forcing $\mu(\Phi) = 0$. From
here, as hefore, finite additivity of μ

The total variations of a complex measure:
There is a very important notion associated with a complex
measure
$$\mu$$
 on (X, M). Suppose $\{An\}$ is a measurable partition of EEM .
Then $\exists d_n \in C$, $k_n l = l$ such that $[\mu(An)] = d_n \mu(An)$. This

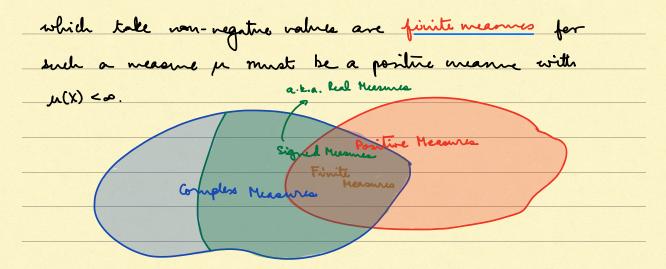
gnis
$$\overline{\Sigma}_{1}[\mu(Au)] = \overline{\Sigma}_{1}du \mu(Au)$$
. Intrivitively taking some and of
limit, we should have that supremu of each sums one all
partitions is $\int_{E} d d\mu$, where d is a function with $|u|=1$. The
problem of conne is that are don't have a truny of integrals.
with reput to complete measures (yet). But, going with the
intrivition, this suggests that $E \mapsto \frac{Sup}{An} [\mu(Au)]$, as $\{tuf\}$ varies
oner us ble partitions of E gives as a measure since "integrals
give measures". As is often the care in mathematics we reneree
the process in formal proof = - first conducting a positive usame [µ]
exercised with μ , and then defining integrals when the

For EEM, let P(E) denote the set of constable or finite meanmable partitions of E.

Define

$$\mu(E) = Sup \qquad \sum_{n=1}^{\infty} |\mu(A_n)|.$$

Terminology: Complex measures which take values in R are called <u>real nearness</u> or more commonly <u>signed measures</u>. It is Tempting to call signed measure which take non-negature values as positives measures, but that term has already been reserved for measures taking values in TO,0]. Signed meanes



CM DSM D FM C PM $PM \cap SM = PM \cap CM = FM$ Over and above that there is a notion of an extended signed measure. This is a constably additive function u: M -> C-00_0] n(\$)=0, such that in cannot take value - a if any set takes ralie as (and vice-versa). For simplicity we will assume that if we have an extended signed measure then m(E) 7-00 for any E, i.e., in takes values in (-oo, oo]. With this convention, pointine measures are a subset of extended signed

theorem : in be a complex measure on (X, M). The the total variation [11] is a pointing measure Proof: Since $\mu(\phi)=0$, clearly $\mu(\phi)=0$. Hence we only need to check comtable additionity for [11]. To that end let

EGM and let
$$f_{Em} \int_{m=1}^{\infty} be a m^{3} ble partition of E. Pickoreal numbers the s.b. $t_{m} < |\mu|(E_{m})$. Then each E_{m} has
a partition $f_{Amm} h_{m=1}^{\infty}$ such that
 $\sum_{n=1}^{\infty} |\mu(Am,n)| > t_{m}$, $m \in \mathbb{N}$.$$

Now
$$\{A_{m,n} \mid m, n \in \mathbb{N}\}$$
 is a partition $A \in A$ there
 $\sum_{n=1}^{\infty} t_m \leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |\mu(A_{m,n})| \leq |\mu|(E).$

$$\sum_{n}^{1} |\mu(A_n)| = \sum_{n} \sum_{m} \mu(G_m (A_n))$$

$$= \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \left[\mu \left(E_{m} \cap A_{n} \right) \right]$$

Since
$$\{A_n\}$$
 was an arbitrary m'ble partition of E, we get
 $|\mu|(E) \in \sum_{n=1}^{\infty} |\mu|(E_m).$ g.e.d.