Complex Measures
Let (x, m) be a measurable space. A map

$$
\mu: M \longrightarrow \mathbb{C}
$$

is called a complex measme on m (or on x, or on (x, m)) if $\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)$ for any countable sequence $E_{1}, E_{2}, \ldots, E_{n}, \ldots$ of pairwise digjont measurable seta.

Note two things:

1. Since the L.S. of the equality

$$
\mu\left(\cup_{n} E_{n}\right)=\sum_{n} \mu\left(E_{n}\right)
$$

is independent of the anowngenent of the sets $E_{1}, \ldots, E_{n}, \ldots$, therefore the R.S. is invariant under re-arrangenent of tums. This means the sum $\sum_{n} \mu\left(E_{n}\right)$ is absdutely convergent.
2. If we set $E_{n}=\phi, n \in \mathbb{N}$, then we get $\mu(\phi)=\sum_{n=1}^{\infty} \mu(\phi)$ forcing $\mu(\phi)=0$. From here, as before, finite additivity of μ follows.

The total variation of a complex measure:
There is a very important notion associated with a complex measure μ on (X, M). Suppose $\{A n\}$ is a wearable partition of $\in \in M$. Then $\exists \alpha_{n} \in \mathbb{C}, k_{n} \mid=1$ sump that $\left|\mu\left(A_{n}\right)\right|=\alpha_{n} \mu\left(A_{n}\right)$. This
gris $\sum_{n}^{1}\left|\mu\left(A_{n}\right)\right|=\sum_{n}^{1} \alpha_{n} \mu\left(A_{n}\right)$. Intritirdy taking some ont of limit, we should have that supremin if such sums over all pantutious is $\int_{E} \alpha d \mu$, where α is a function with $|k|=1$. The problem of comm is that we don't have a tho ny of integrals. with repeat to complex measmes (yet). But, going with the intuition, this suggests that $E \longmapsto \operatorname{Sup}_{\left\{A_{n}\right\}}\left|\mu\left(A_{n}\right)\right|$, as $\left\{A_{n}\right\}$ vance over m' bl partitions of gives na a measure sLice "integrals give measmes". As is seen the care in mathematics we reverse the process in formal poofs - first condincting a positive manure |u| associated with μ, and then defining integrals w.r.t μ.

Io r $E \in M$, let $P(E)$ denote the sect of countable or finite meamuable partitions of E.

Define

$$
|\mu|(E)=\sup _{\left\{A_{n}\right\} \in p(E)} \sum_{n=1}^{\infty}\left|\mu\left(A_{n}\right)\right| .
$$

Clearly $|\mu|: M \longrightarrow[0, \infty]$.
We will show $|\mu|$ is a measure which is finite. $|\mu|$ is called the variation or the total variation 8μ.

Terminology: Complex measmes whin h take values in \mathbb{R} are called seal measmes or move commonly signed measmes. It is Tempting to call signed measure which take non-regative values as positive measures, but that term has already been resented fer measures taking values in $[0, \infty]$. Signed meames
which take von-regatue values are finite meames for such a measure μ must be a positure seance with $\mu(x)<\infty$. a.b.a. Real themes

Over and above that there is a notion of an extended signed measure. This is a countably additive function $\mu: M \longrightarrow[-\infty, \infty]$, $\mu(\phi)=0$, such that μ cannot take value $-\infty$ if any set takes value ∞ (and vice-reasa). For simplicity we will assume that if we have an extended signed measure thess $\mu(E) \neq-\infty$ fer any E, lie., μ takes values in $(-\infty, \infty]$. With this convention, poistive measures are a subset of extended signed measures.

Theorem: Let μ be a complex measure on (x, M). The the total variations $|\mu|$ is a positions measure.

Proof:
Since $\mu(\phi)=0$, clearly $|\mu|(\phi)=0$. Hence eve only need to chare countable additivity fer $|\mu|$. To that end let
$E \in M$ and let $\left\{E_{m}\right\}_{m=1}^{\sim}$ be a n'ble partition of E. Pick real number t_{n} s.t. $t_{m}<\operatorname{lul}\left(E_{m}\right)$. Then earl E_{m} has a partition $\left\{A_{m, n}\right\}_{n=1}^{\infty}$ such that

$$
\sum_{n=1}^{\infty}\left|\mu\left(A_{m, n}\right)\right|>t_{m}, \quad m \in \mathbb{N} .
$$

Now $\left\{A_{m, n} \mid m, n \in \mathbb{N}\right\}$ is a partition $\mathcal{A} E$. Hence

$$
\sum_{m=1}^{\infty} t_{m} \leqslant \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|\mu\left(A_{m, n}\right)\right| \leqslant|\mu|(E) .
$$

It follows that

$$
\sum_{m=1}^{\infty}|\mu|\left(E_{m}\right) \leq|\mu|(E)
$$

since $t_{m}<|\mu|\left(E_{m}\right)$ was arbitiong.
On the otter hound, suppose $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a mile potation of E. Then $\left\{E_{m} \cap A_{n}\right\}_{n=1}^{\infty}$
pentutions of $E_{\text {in }}$ whence
$(x) \quad \sum_{n=1}^{\infty}\left|\mu\left(E_{m} \cap A_{n}\right)\right| \leqslant|\mu|\left(E_{m}\right), \quad m \in \mathbb{N}$.
Thus

$$
\begin{aligned}
\sum_{n}\left|\mu\left(A_{n}\right)\right| & =\sum_{n}\left|\sum_{m} \mu\left(E_{m} \cap A_{n}\right)\right| \\
& \leqslant \sum_{n} \sum_{m}^{t}\left|\mu\left(E_{m} \cap A_{n}\right)\right| \\
& =\sum_{n}^{1} \sum_{n} \mid \mu\left(E_{m} \cap A_{n} \mid\right. \\
& \leqslant \sum_{m}|\mu|\left(E_{m}\right) \quad(\text { via }(*))
\end{aligned}
$$

Since $\left\{A_{n}\right\}$ was an orbiting noble partition of E, we get

$$
|\mu|(E) \leqslant \sum_{m}|\mu|\left(E_{m}\right) .
$$

Lemma: Let $z_{1}, \ldots, z_{N} \in \mathbb{\mathbb { C }}$. There exists a subset S of $\{1,2, \ldots, N\}$ for which

$$
\left|\sum_{k \in s} z_{k}\right| \geqslant \frac{1}{\pi} \sum_{k=1}^{N}\left|z_{k}\right|
$$

Remark: The factor $\frac{1}{\pi}$ is what allows ns to "reverse" the triangle inequality. It is interesting that it is a univess al constant, independent of N or of z_{1}, \ldots, z_{N}.

Prof: Let α_{k} be an argument of z_{k}, so that $z_{k}=\left|z_{k}\right| e^{i \alpha_{k}}$. For $\theta \in[-\pi, \pi]$, define

$$
s(\theta)=\left\{k \mid 1 \in k \leq N, \quad \cos \left(\alpha_{k}-\theta\right)>0\right\}
$$

Then

$$
\begin{aligned}
\left|\sum_{k \in S(\theta)} z_{k}\right|=\left|\sum_{k \in S(\theta)} e^{-i \theta} z_{k}\right| & \geqslant \operatorname{Re} \sum_{k \in S((a)} e^{-i \theta} z_{k} \\
& =\sum_{k=1}^{n}\left|z_{k}\right| \cos ^{+}\left(\alpha_{k}-\theta\right)
\end{aligned}
$$

where $\cos ^{t}=x_{\{\cos >0\}} \cos$
Let $\theta_{0} \in[-\pi, \pi]$ be a point where $\sum_{k=1}^{n}\left|z_{k}\right| \cos t(\alpha-\theta)$ achieves its maximum as a function of θ. Let $s=s(\theta)$.

Then

$$
\left.\left|\sum_{k \in S} z_{k}\right| \geqslant \sum_{k=1}^{n}\left|z_{k}\right| \cos ^{t}\left(\alpha_{k}-\theta\right) \quad \text { fer ever } \theta \in G \pi, \pi\right]
$$

Hence

$$
\int_{-\pi}^{H}\left|\sum_{k \in S} z_{k}\right| d \theta \geqslant \sum_{k=1}^{N}\left|z_{k}\right| \int_{-\pi}^{*} \cos ^{+}\left(\alpha_{k}-\theta\right) d \theta
$$

Nome $\int_{-\pi}^{\pi} \cos ^{+}(\alpha-\theta) d \theta=2$ whatever be θ since it is simply the area under the positure panto of the anne $y=\cos \theta$ in the $\theta-y$ plane oven an interval of length 2π.
Thus ($*$) gris

$$
2 \pi\left|\sum_{k \in S} z_{k}\right| \geqslant 2 \sum_{k=1}^{N}\left|z_{k}\right|
$$

Therven: Let μ be a complex measure on (x, m). Then the total variation $|\mu|$ is a finite measure.
Pros?:
Suppose $E \in M$ is sung that $|u|(E)=\infty$. Let

$$
t=\pi(1+|\mu(E)|)
$$

(so that $\frac{t}{\pi} \geqslant 1$). Since $|\mu|(E)=\infty$, the ne exists a m'ble partition $\left\{A_{n}\right\}$ o E s.t. $\sum_{i}\left|\mu\left(A_{n}\right)\right|>t$. In pout $\left\{A_{n}\right\}$
can be taken to be a finite partition of E, say $\left\{A_{1}, A_{2}, \ldots, A_{N}\right\}$.
By the Lemma above, we hare $S \subseteq\{(, \ldots, N\}$ such that

$$
\left|\sum_{k \in S} \mu\left(A_{k}\right)\right| \geqslant \frac{1}{\pi} \sum_{k=1}^{N}\left|\mu\left(A_{k}\right)\right|>\frac{t}{\pi} \geqslant 1 .
$$

Let $A=\bigcup_{k \in S} A_{k}$. The above shows that

$$
\mu(A)>\frac{t}{\pi} \geqslant 1
$$

Let $B=E-A$. Then

$$
\begin{aligned}
\mu(B)=\mu(E)-\mu(A) & \geqslant|\mu(A)|-|\mu(E)| \\
& >\frac{t}{\pi}-|\mu(E)| \\
& =1 \quad(\text { by definition of }) .
\end{aligned}
$$

Thus we can partition E into two m'ble sets A and B, with $\mu(A)>1, \mu(B)>1$, and ether $\mu(A)=\infty$ or $\mu(B)=\infty$.

Thus X cam be partitioned into A_{1} and B_{1}, with $\mu\left(A_{1}\right)>1$ and $\mu\left(B_{1}\right)=\infty$. Next B_{1} can be pentitioned into A_{2} and $B_{2}, \mu\left(A_{2}\right)>1$ and $\mu\left(B_{2}\right)=\infty$. Contuse this. By induction we have disjoint m' ble sets $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ with $\mu\left(A_{i}\right)>1 \quad \forall i \in \mathbb{N}$. This means $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ is not convergent since $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) \neq 0$, which is a contradiction.

Cordlany: Let σ be an extended signed measure on (x, μ) and define $|\sigma|: M \longrightarrow[0, \infty]$ in the same way g that the total variations of a complex measure was defined. Then $|\sigma|$ is a positive measure.
Bemock: We can no longer ensure that $|\sigma|$ is a finite measure.

Proof: This is not a direct conollany sLice extended signed masses need not be complex measures. The difficulty is when σ is not a signed measme. WLOG supper σ takes value ∞ on some mable sit. Then $\sigma(A) \neq-\infty$ fer any $A \in M$. This means that if $\sigma(B)=\infty$ per some $B \in M$, then $\sigma(E)=\sigma(B)+\sigma(E-B)=\infty$ for ency $E \in M$ s. $-E \supset B$, for $\sigma(E-B) \neq-\infty$.

In pantrocular if $E \in M$ io such that $\sigma(E)<\infty$, then $\sigma(A)<\infty$ for every m 'ble subset A of E. It follows thant σ restricted to E is a signed measure (ie. a real valued complex measme) and from the theorem, if $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a m'ble partition of E, then $|\sigma|(E)=\sum_{n=1}^{\infty}|\sigma|\left(A_{n}\right)$, and $\forall(E)<\infty$. Now suppose E is a m'ble set and $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a m'ble partition of E such that $\sum_{n}|\sigma|\left(A_{n}\right)<\infty$. Then for every $N \in \mathbb{N}$

$$
\sum_{n=1}^{N} \sigma\left(A_{n}\right) \leqslant \sum_{n=1}^{N}\left|\sigma\left(A_{n}\right)\right| \leqslant \sum_{n=1}^{N}|\sigma|\left(A_{n}\right) \leqslant \sum_{n=1}^{\infty}|\sigma|\left(A_{n}\right)<\infty \text {. }
$$

It follows (by letting $N \rightarrow \infty$) that $\sigma(E) \leqslant \sum_{n}|\sigma|\left(A_{n}\right)<\infty$. Thus $\sigma(E)<\infty$ if and only if $\sum_{n}^{2}|\sigma|\left(A_{n}\right)<\infty$ for some (and hance every) m'ble pontution $\left\{A_{n}\right\}_{n=1}^{\infty}$ of E.

Now suppose $\sigma(E)=\infty$. Hoo above, $\sum_{n}^{\infty}|G|\left(A_{n}\right)=\infty$ for ency m'ble partition $\left\{A_{n}\right\}_{n=1}^{\infty}$ of E. In particular, setting $A_{1}=E, A_{n}=\phi, n>1$, $|\sigma|(E)=\infty$. Thus in this case too we have constable additivity. q.e-d.

Definition: Let σ be an extenuated A signed mene. Define

$$
\sigma^{+}=\frac{|\sigma|+\sigma}{2} \text { and } \sigma^{-}=\frac{|\sigma|-\sigma}{2} \text {. } \longleftarrow \text { Does not mat mate sense fer which }
$$

The measmes σ^{+}and σ^{-}are periture messes lat laves one of than is forte). σ^{+}is called the positive variation of σ and σ^{-}the negative variation. The decomposition

is called the Jordan decomposition of σ. Note that $|\sigma|=\sigma^{+}+\sigma^{-}$. The Jordan decomposition (at least fer o-finte mushes) is minimal in a sense we will describe later (hashtag: \#thanDecomposition).

