$$\underbrace{\operatorname{Complex Meanure}}_{\mu:M} \xrightarrow{} \mathcal{C}$$
Let (X,M) be a measurable space. A map

$$\mu:M \longrightarrow \mathcal{C}$$
is called a complex measure on M (or on X , or on (X,M))
if $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \overset{\sim}{\sum} \mu(E_n)$ for any constable sequence
 $E_5 E_2, \dots, E_n, \dots$ of principle disjoint measurable rete.
Note two things:
1. Since the L.S. of the equality
 $\mu(\bigcup E_n) = \overset{\sim}{\sum} \mu(E_n)$
is independent of the amongement of the sete
 $E_5, \dots, E_n, \dots, E_n, \dots, E_n$, therefore the R.S. is inversiont
under re-arrangement of terms. This means
the sum $\overset{\sim}{\sum} \mu(E_n)$ is abridually convergent.
2. If we set $E_n = \Phi$, $n \in \mathbb{N}$, then we get
 $\mu(\Phi) = \overset{\sim}{\sum} \mu(\Phi)$ forcing $\mu(\Phi) = 0$. From
here, as hefore, finite additivity of μ

The total variations of a complex measure:
There is a very important notion associated with a complex
measure
$$\mu$$
 on (X, M). Suppose $\{An\}$ is a measurable partition of EEM .
Then $\exists d_n \in C$, $k_n l = l$ such that $[\mu(An)] = d_n \mu(An)$. This

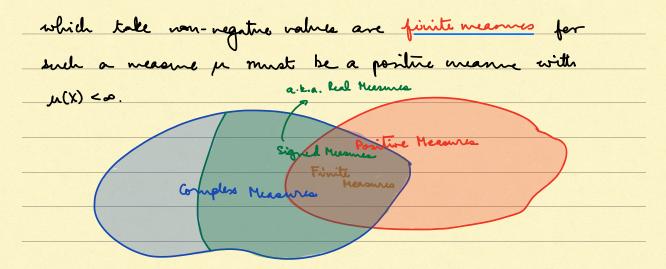
gnis
$$\overline{\Sigma}_{1}[\mu(Au)] = \overline{\Sigma}_{1}du \mu(Au)$$
. Intrivitively taking some and of
limit, we should have that supremu of each sums one all
partitions is $\int_{E} d d\mu$, where d is a function with $|u|=1$. The
problem of conne is that are don't have a truny of integrals.
with reput to complete measures (yet). But, going with the
intrivition, this suggests that $E \mapsto \frac{Sup}{An} [\mu(Au)]$, as $\{tuf\}$ varies
oner us ble partitions of E gives as a measure since "integrals
give measures". As is often the care in mathematics we reneree
the process in formal proof = - first conducting a positive usame [µ]
exercised with μ , and then defining integrals when the

For EEM, let P(E) denote the set of constable or finite meanmable partitions of E.

Define

$$\mu(E) = Sup \qquad \sum_{n=1}^{\infty} |\mu(A_n)|.$$

Terminology: Complex measures which take values in R are called <u>real nearnes</u> or more commonly <u>signed measures</u>. It is Tempting to call signed measure which take non-negature values as positives measures, but that term has already been reserved for measures taking values in [0,0]. Signed meanes



CM DSM D FM C PM $PM \cap SM = PM \cap CM = FM$ Over and above that there is a notion of an extended signed measure. This is a constably additive function in: M -> [-00,0], n(\$)=0, such that in cannot take value - a if any set takes ralne as (and vice-versa). For simplicity we will assume that if we have an extended signed measure then m(E) 7-00 for any E, i.e., in takes values in (-oo, oo]. With this convention, pointine measures are a subset of extended signed

theorem : in be a complex measure on (X, M). The the total variation [11] is a pointing measure Proof: Since $\mu(\phi)=0$, clearly $\mu(\phi)=0$. Hence we only need to check comtable additionity for [11]. To that end let

EGM and let
$$f_{Em} \int_{m=1}^{\infty} be a m^{3} ble partition of E. Pickoreal numbers the s.b. $t_{m} < |\mu|(E_{m})$. Then each E_{m} has
a partition $f_{Amm} h_{m=1}^{\infty}$ such that
 $\sum_{n=1}^{\infty} |\mu(Am,n)| > t_{m}$, $m \in \mathbb{N}$.$$

Now
$$\{A_{m,n} \mid m, n \in \mathbb{N}\}$$
 is a partition $A \in A$ there
 $\sum_{n=1}^{\infty} t_m \leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |\mu(A_{m,n})| \leq |\mu|(E).$

$$\sum_{n}^{1} |\mu(A_n)| = \sum_{n} \sum_{m} |\mu(B_m A_n)|$$

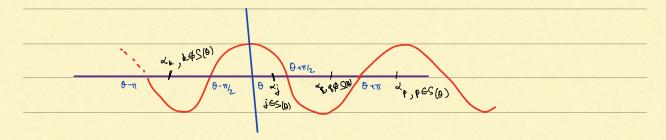
$$= \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \left[\mu \left(E_{m} \cap A_{n} \right) \right]$$

Since
$$\{A_n\}$$
 was an arbitrary m'ble partition of E, we get
 $|\mu|(E) \in \sum_{n=1}^{\infty} |\mu|(E_n).$ g.e.d.

Lemma : Let Zym, ZN E C. There exists a subset S of Elsz, ..., Ng for which

$$\left| \sum_{k \in S}^{T} z_{k} \right| \geqslant \frac{1}{\pi} \sum_{k=1}^{T} \left| z_{k} \right|$$

For the de be an argument of
$$z_k$$
, so that $z_k = |z_k| e^{id_k}$.
For $0 \in [-\pi,\pi]$, define
 $S(0) = f(k) | i \in S(k)$, cas $(d_k - 0) > 0$



Then

$$\begin{vmatrix} \sum_{k=1}^{n} \sum_{k=1}^{n} |z_{k}| = \sum_{k=1}^{n} e^{-i\theta} z_{k} \\ k \in S(\theta) \\ = \sum_{k=1}^{n} |z_{k}| \cos^{+}(d_{k} - \theta) \\ k = i \end{vmatrix}$$

where
$$\cos^{+} = \chi_{\{\cos > 0\}} \cos \frac{\pi}{2}$$

Let $\theta_0 \in \mathbb{C}^{+}, \pi$] be a point where $\sum_{k=1}^{n} |z_k| \cos^{+}(u-\theta)$
achieves its maximum as a function $q \theta$. Let $S = S(\theta)$.

Thue

$$\begin{aligned} \left| \sum_{k \in S}^{T} Z_{k} \right| \geqslant \sum_{k=1}^{T} |z_{k}| \cos^{2}(u_{k} - \theta) \quad \text{for any } \theta \in \mathbb{C}^{T} \mathbb{I}_{I}^{T} \right| \\ \frac{1}{k \in S} \left| \sum_{k \in S}^{T} Z_{k} \right| d\theta \geqslant \sum_{k=1}^{T} |z_{k}| \int_{-\pi}^{\pi} \cos^{2}(u_{k} - \theta) d\theta \quad (\theta) \\ \frac{1}{\pi} \left| \sum_{k \in S}^{T} Z_{k} \right| d\theta \geqslant \sum_{k=1}^{T} |z_{k}| \int_{-\pi}^{\pi} \cos^{2}(u_{k} - \theta) d\theta \quad (\theta) \\ Nono \int_{-\pi}^{T} \left| \cos^{2}(u - \theta) d\theta \right| = 2 \text{ obstane be } \theta \text{ since it} \\ \text{is simply the area under the positive parts } q \text{ the} \\ \text{cure } y = \cos \theta \text{ in the } \theta - y \text{ plane over an interval } q \text{ length } 2\pi. \\ Thus (H) = q_{\min} \\ 2\pi \left| \sum_{k \in S}^{T} Z_{k} \right| \geqslant 2 \sum_{k=1}^{N} |z_{k}| \\ \frac{1}{k \in S} \\ \frac{1}{k$$

Suppose EGM is such that
$$|\mu|(E) = \infty$$
. Let
 $t = \pi (1 + |\mu(E)|)$
(so that $t \equiv 21$). Since $|\mu|(E) = \infty$, there exists a m²ble
pontition $\{An\}^{2} \cap E$ s.t. $\sum_{n=1}^{\infty} |\mu(An)| > t$. In fact $\{An\}^{2}$
can be taken to be a finite partition $\cap E$, say $\{A_{1}, A_{2}, ..., A_{N}\}^{2}$.
By the lemma above, we have $S \subseteq \{1, ..., N\}$ such that
 $|\sum_{k \in S} \mu(A_{k})| \geqslant \prod_{k=1}^{N} |\mu(A_{k})| > t \geqslant 1$.
Let $A = \bigcup_{k \in S} A_{k}$. The above shows that
 $\mu(A) > t \geqslant 1$

Let B = E - A. Then $\mu(B) = \mu(E) - \mu(A) \ge [\mu(A)] - (\mu(E)]$ $\ge \frac{t}{\pi} - [\mu(E)]$ = 1 (by definition q t). Thus we can partition E into two mible ests A and B, with $\mu(A) \ge 1$, $\mu(B) \ge 1$, and estim $\mu(A) \ge 0$ or $\mu(B) = 00$. Thus X can be partitioned into A_1 and B_1 , with $\mu(A) \ge 1$ and $\mu(B_1) = 00$. Next B_1 can be partitioned into A_2 and B_2 , $\mu(A_2) \ge 1$ and $\mu(B_2) \ge 00$. Continue thus. By induction we have diajoint n^2 ble sets $A_1, A_2, ..., A_n, ...$ with $\mu(A_1) \ge 1$ $\forall i \in \mathbb{N}$. This means $\sum_{n=1}^{2} \mu(A_n)$ is nest convergent since $\lim_{n \ge 0} \mu(A_n) \ne 0$, which is a contradiction.

Corollary: Let a be an extended signed measure on (X, u) and define 101: M -> [0,0] in the same way that the total variation of a complex measure was depined. Then 101 is a positive meanne Comme : we can no longer ensure that 10] is a finite

measure.

Pool: This is not a direct coollary mice extended signed massmes need not be complex measures. The difficulty is when σ is not a signed measure. WLOG suppose σ takes ratue ∞ on some mible set. Then $\sigma(A) \neq -\infty$ for any AEM. This means that if $\sigma(B)=\infty$ for some BEM, then $\sigma(E)=\sigma(B) + \sigma(E-B)=\infty$ for every EEM s.t. EDB, for $\sigma(E-B) \neq -\infty$.

In penticular if EEM is anch that r(E) <∞, then
σ (A) <∞ for every m'ble sulart A of E. It follows that
σ restricted to E is a signed measure (i.e. a real valued
complex measure) and from the theorem, if {Au}[∞]_{net} is a
m'ble pentition A E, then br1(E) = Ein[∞]₁ br1 (Au), and b1(E) <∞.
Now suppose E is a m'ble set and {Au}[∞]_{net} is a m²ble
pentition A E is a m'ble set and {Au}[∞]_{net} is a m²ble
pentition A E is a m'ble set and {Au}[∞]_{net} is a m²ble
pentition A E is b1 (Au) <∞. Then for every Ne IN

$$\sum_{n=1}^{N} \sigma(Au) \le \sum_{n=1}^{N} 1\sigma(Au)! \le \sum_{n=1}^{N} b1(Au) < ∞.$$
 Thus $\sigma(E) < ∞$
It follows (by letting N→∞) that $\sigma(E) \le \sum_{n=1}^{N} b1(Au) < ∞$. Thus $\sigma(E) < ∞$
if and only if $\sum_{n=1}^{N} b1(Au) < ∞$ for some (and hence every) m'ble
pentition {Au}[∞]_{n=1}, of E.

Now suppose or (E) = 00. From above, Zi bol (An) = 00 for energy m'ble partition {Au}n=1 q E. In pontrular, setting Ar=E, An=\$ n71, 101 (E) =00. Thus in this case too we have contrable additivity. gread

Definition: Let 5 de an estanded, signed meane. Definie σ+= b-1+σ and σ== 1σ1-σ. ← Does not make sense for 2 and σ= 2 bolo control signed means which 2 how est of injust σ-rate The measures of and of are periture measures (at last me of them is printe). ot is called the positive variation of and s- the regative variation. The I a is an extended signed meane decomposition such that lot is a finite, then by breaking up X into a contable # sets on which bit is finite, we can still define ot a o, and have the Jordan desamp. a = a+-a_ is called the Jondan decomposition of or Note that for = ++ + -The Jordan decomposition (at least for o-finite measures) is minimal in a sense we will describe later (hashtag: #HalmDecomposition).