Convex functions
Observation: Consider \mathbb{R}^{2} regarded as the usual cantesions plane of analytic geometry. Suppose l_{1} and l_{2} are two lives in \mathbb{R}^{2} meeting at a point T, X a point on l_{1} to the left of P (ie., the first coordinate of T is less then n the first coordinate of P) and Y a point on l_{2} to the onight of P. Let l be the line joining x and Y. Then P lies below l if and only if the slope of l_{1} is less than the slope of l_{2}.

The proof is elementary and the details are left to you. Here is a sketch. Lit R be the point on l whose x-coordinate is the same as that $A P$. We want to find exnditions when the y-coordinate of R is langer than that of P. So let $X=(\alpha, \beta), Y=(r, \delta), P=(p, q), R=(p, \delta)$.
Let $m_{1}=\frac{\beta-q}{\alpha-p}, m_{2}=\frac{\delta-q}{r-p}$. The equ of l is $y=\beta+\frac{\delta-\beta}{r-\alpha}(x-\alpha)$. This means $s=\beta+\frac{\delta-\beta}{r-\alpha}(p-\alpha)$. You have to show $q<s$ if and only if $m_{1}<m_{2}$.

Definition (corves function): Let (a, b) be an open interval in \mathbb{R}, $-\infty \leq a<b \leq \infty$. A function $\varphi:(a, b) \longrightarrow \mathbb{R}$ io said to be convex if

$$
\begin{equation*}
\varphi((1-\lambda) x+\lambda y) \leqslant(1-\lambda) \varphi(x)+\lambda \varphi(y) \tag{U}
\end{equation*}
$$

whenever $x, y \in(a, b)$ and $0 \leq d \leq 1$.
This is equivalent to saying that if $x, y \in(a, b)$ and $t \in(x, y)$, then $(t, \varphi(t))$ lies below or on the line connecting $(x, \varphi(x))$ and $(y, \varphi(y))$.

From our deservation above, the condition fer convexity of φ is equivalent to the condition

$$
\begin{equation*}
\frac{\varphi(t)-\varphi(s)}{t-s} \leqslant \frac{\varphi(u)-\varphi(t)}{u-t} \tag{2}
\end{equation*}
$$

whenever $a<s<t<u<b$.

Theorem: If φ is convex on (a, b) then φ is continuous $m(a, b)$.
Prof:
Let us purse φ is right continuous. The prof for left continuity is simitar.

Suppose we $a<x<s<t<y<b$. We wish to examine $\lim _{t \rightarrow s} \varphi(t)$. Let

$$
\begin{array}{ll}
X=(x, \varphi(x)), & Y=(y, \varphi(y)) \\
S=(s, \varphi(s)), & T=(t, \varphi(t)) .
\end{array}
$$

Then X is the left most point, Y the right most, and S is to the left of T.

Since S lies below the line joining X and T, therefore T lies above the line joining S and x. On the otter hand T lies below the line joing S and y.

Now let $t \longrightarrow s$. Since T is in the wedge in the picture, it follows that $T \longrightarrow S$ as $t \rightarrow s$. Thus $\lim _{t \rightarrow \Delta^{+}} \varphi(t)=\varphi(s)$. A similar argument would show that $\lim _{t \rightarrow \delta^{-}} \varphi(t)=\varphi(8)$.

Remark: Suppress $\lambda_{1}, \lambda_{2}, \ldots, d_{n}$ are non-negatine numbers such that $d_{1}+\ldots+d_{n}=1$, and $Q:(a, b) \longrightarrow \mathbb{R}$ a convex function. It is easy it see by induction that for $t_{0}, . ., t_{n} \in(a, b)$,

$$
\begin{equation*}
\phi\left(\sum_{i=1}^{n} d_{i} t_{i}\right) \leqslant \sum_{i=1}^{n} d_{i} \varphi\left(t_{i}\right) . \tag{*}
\end{equation*}
$$

The date $\left(d_{i}\right),\left(t_{i}\right)$ gives un a portability meamue d on $((a, b), \mathcal{L})$ where R is the Lebesgue σ-algehren on (a, b), warmly

$$
\lambda(E)=\sum_{j=1}^{k} d_{i_{j}} \quad \text { where } E \cap\left\{t_{1}, \ldots, t_{n}\right\}=\left\{t_{i_{1}}, \ldots, t_{i_{k}}\right\}
$$

with the $t_{i j}$'s distant for $j=1, \ldots, k$. With this mene it is dem that (*) is equivalent to saying

$$
\varphi\left(\int_{(a, b)} t d \lambda\right) \leqslant \int_{(a, b)} \varphi(t) d \lambda . \quad(* *)
$$

Move generally we have the following:

Theorem (Jensen's inequality): Let (x, M, μ) be a measure spare withe $\mu(x)=1, f: x \rightarrow(a, b)$ a measurable function and $Q(a, b) \rightarrow \mathbb{R}$ a converse function. Then

$$
\varphi\left(\int_{x} f d \mu\right) \leqslant \int_{x}(\varphi \circ f) d \mu
$$

Pr?:
Let $t=\int_{x} f d \mu$. Then it is easy to see that $t \in(a, b)$.
[bout: Use the feet that if σ is a non-jno measure on $(2, f)$, and $g>0$ is a mile function on Z, then $\int_{2} g d \sigma>0$. (How will yon pore this?) Use also the font that if $\sigma(2)=1$, then for any constant $c, \int_{2} c d \sigma=c$.]

Let $\beta=\sup \left\{\left.\frac{Q(t)-\varphi(u)}{t-u} \right\rvert\, a<u<t\right\}$

Then $\beta \leqslant \frac{\varphi(s)-Q(t)}{s-t} \quad \forall \quad s \geqslant t . \quad(t t) \quad($ by $(z))$

It is then eng ts see that

$$
\varphi(s) \geqslant \varphi(t)+\beta(s-t) \quad \forall s \in(a, b) .
$$

Indeed if $s \in[t, b)$ then the above follows from $(t+)$ and if $s \in(a, t]$ then the above follows from (t). This means

$$
\varphi(f(x)) \geqslant \varphi(t)+\beta(f(x)-t) \quad \forall x \in X
$$

Integrating we get

$$
\begin{aligned}
\int_{x} \varphi \cdot f d \mu & \geqslant \varphi(t)+\beta\left(\int_{x} f d \mu-k\right) \\
& =\varphi\left(\int_{x} f d \mu\right)+\beta(t-t) \\
& =\varphi\left(\int_{x} f d \mu\right) . \quad \text { q.e.d. }
\end{aligned}
$$

Remonk: In view of (2), a differentiable frumetion φ on (a, b) is convex if and only if φ^{\prime} is an increasing function. In particular $t \longmapsto e^{t}$ is convex. So is $t \longmapsto t^{p}$ if $p>1$.

Conjugate expments: If p and of are positive veal numbers such that $p+q=p q$, or equivalently

$$
\frac{1}{p}+\frac{1}{q}=1
$$

then p and q are called a pair of conjugate exponents. It is clear from the relation above that $1<p, q<\infty$. Note that $p=q$ if and only if $p=2$ (or $q=2$).

We extend the definition of eonyingate exponents $t s$ the case $p=1$ and $p=\infty$ by setting $q=\infty$ in the first care and $q=1$ in the second case. Note that with this extended definition, the relationship $\frac{1}{p}+\frac{1}{q}=1$ continues ts holt given our conventions regarding division by 0 and ∞.

Our interest is in L^{p}-spares fer $p \geqslant 1$. The spares $L^{p}(n)$ and $L^{b}(\mu)$, $p-q$ ernjugnte, share an interesting relations.

To see the are first reed:
Theorem: Let p and of be a pair of conjugate exponents with l<p<>. Let (x, m, μ) be a measure space, and f, g measurable functions on X taking values in $[0, \infty]$. Then
(a) (Hölder's inequality)

$$
\int_{x} f g d \mu \leqslant\left\{\int_{x} f^{p} d \mu\right\}^{1 / p}\left\{\int_{x} g^{q} d \mu\right\}^{1 / q}
$$

(b) (Minkowski's inequality)

$$
\left\{\int_{x}(f+g)^{p} d \mu\right\}^{1 / p} \leqslant\left\{\int_{x} f^{p} d \mu\right\}^{1 / p}+\left\{\int_{x} g^{q} d \mu\right\}^{1 / q}
$$

Remove: If $p=q=2$ then Holder's inequality is the Comply Selmanz inequality.
Prof:
(a) Let $A=\int_{x} f^{p} d \mu$ and $B=\int_{x} g^{q} d \mu$. If either A or B is ∞, then the Hölder inequality is clearly true. So assume both A and B are finite. If $A=0$, then cleanly $f=0$ a.e., and hence $\int_{x}+g d \mu=0$, and $\operatorname{Höl}^{\prime}$ den is trivially true. Similarly if $B=0$. So let us assume A and B are posilture real numbers. Set

$$
F=\frac{f}{A} \quad \text { and } \quad G=\frac{g}{B} \text {. }
$$

Then

$$
\int_{x} F^{p} d \mu=\int_{x} G^{q} d \mu=1 .
$$

Fro $x \in\{F \neq 0\} \cap\{G \neq 0\}$ let r, s be real number
such that $e^{r / p}=F(x)$ and $e^{s / q}=G(x)$. Since $t \mapsto e^{t}$ is convex we have $e^{r / p+s / q} \leq \frac{1}{p} e^{r}+\frac{1}{q} e^{t}$. This means

$$
F(x) G(x) \leq \frac{1}{p} F(x)^{p}+\frac{1}{q} G(x)^{q} .
$$

The above inequality is trivially bine if $x \in\{F=0\} \cup\{6=0\}$, and hence is true fer all $x \in X$. Integrate ward μ to get

$$
\int_{x} F G d \mu \leqslant \frac{1}{p} \int_{x} F^{p} d \mu+\frac{1}{q} \int_{x} G^{q} d \mu=\frac{1}{p}+\frac{1}{q}=1
$$

Holden's inequality follows easily.
(b). By Holden we have

$$
\begin{aligned}
\int_{x} f(f+g)^{p-1} d \mu & \leqslant\left\{\int_{x} f^{p} d \mu\right\}^{Y_{p}}\left\{\int_{x}(f+g)^{(p-1) q} d \mu\right\}^{Y_{q}} \\
& =\left\{\int_{x} f^{p} d \mu\right\}^{Y_{p}}\left\{\int_{x}(f+g)^{p} d \mu\right\}^{Y_{q}}
\end{aligned}
$$

Reversing the vole of f and g we get

$$
\int_{x} g(f+g)^{p-1} d \mu \leqslant\left\{\int_{x} g^{p} d \mu\right\}^{y_{p}}\left\{\int_{x}(f+g)^{p} d \mu\right\}^{y_{q}}
$$

Adding the two inequalities we get

$$
(f * * x)-\int_{x}(f+g)^{p} d_{\mu} \leqslant\left(\left\{\int_{x} f^{p} d \mu\right\}^{\frac{1}{p}}+\left\{\int_{x} g^{p} d_{\mu}\right\}^{\frac{y_{p}}{p}}\right)\left\{\int_{x}(f+g)^{p} d_{\mu}\right\}^{\frac{y_{q}}{q}}
$$

Now Minkowski is cleanly tone if either the left side of Minkowsbi is yo or its right side is ∞. So let hs assume $\int_{x}(f+p)^{p} d \mu \neq 0$ and that both $\int_{x} f^{p} d \mu$ as will no $\int_{0} g^{p} d \mu$ ave finite. Since $t \mapsto t^{p}$ is convex, we see that $\left(\frac{f+g}{2}\right)^{p} \leqslant \frac{1}{2} f^{p}+\frac{1}{2} g^{p}$. This means $\int_{x}(f+p)^{p} d \mu<\infty$. Hence $(* * *)$ yields

$$
\left\{\int_{x}\left(f+g^{p} d \mu\right\}^{1-1 / q} \leqslant\left\{\int_{x} f^{p} d \mu\right\}^{1 / p}+\left\{\int_{x} g^{p} d \mu\right\}^{y_{p}}\right.
$$

i.e.

$$
\left\{\int_{x}(f+g)^{p} d \mu\right\}^{1 / p} \leqslant\left\{\int_{x} f^{p} d \mu\right\}^{1 / p}+\left\{\int_{x} g^{+} d \mu\right\}^{1 / p}
$$

