Lecture 11

Convex functions Observation: Consider R² regarded as the usual contession plane of analytic geometry. Suppose I, and Iz are two lines in R² meeting at a point T, X a point on ly to the left of P (i.e., the first coordinate of T is less than the first condinate of P) and Y a point on le to the oright of P Lit I be the line joining X and Y. Then Plies bolow I if and only if the slope of ly is less than the slope of l2.

The good is elementary and the details are left to you. Here is a stetch. Let R be the point on I whose x-condinate is the same as that of P. We want to find conditions when the y-coordinate of R is larger than that of P. So let X=(a, B), Y=(r, S), P=(p,q), P=(p,s). Lit $m_1 = \beta - q$, $m_2 = \overline{\delta} - q$. The eqn of L is $y = \beta + \overline{\delta} - \beta$ (x-a). This means $x - \beta$. b= B+ 5-B (p-2). You have to show q<b if and my if $m_1 < m_2$.

Definition (Conners function): Let
$$(a, b)$$
 be an open external in \mathbb{R} ,
 $-s \equiv a < b \equiv so.$ A function $\varphi: (a, b) \longrightarrow \mathbb{R}$ is said to be connerse
if
 $\varphi((1-s) \geq t, t, y) \equiv (1-s) \varphi(z) + \lambda \varphi(y)$ (1)
whenever $z, y \in (a, b)$ and $0 \equiv \lambda \leq 1$.
This is equivalent to saying that if $z, y \in (a, b)$ and
 $\pm \in (x, y)$, then $(\pm, \varphi(t))$ like belows or an the line connecting
 $(t, \varphi(t))$ and $(t, \varphi(t))$.
graph Q from our descrution above, the
 $(z, \varphi(t))$ and $(t, \varphi(z))$.
 $\varphi(t) = \varphi(t)$ to the condition
 $\psi(t) = \varphi(t)$ to the condition
 $\psi(t) = \varphi(t)$ and $(t, \varphi(t))$.
 $\varphi(t) = \varphi(t)$ to the condition
 $\psi(t) = \varphi(t) = \varphi(t) = (2)$
wheneve $a < a < t < t < y = b$. We wish to examine
 $\psi(t) = \varphi(t)$. Let
 $X = (x, \varphi(t))$, $Y = (y, \varphi(t))$.
Then X is the left most point; Y the right most, and
 S is to the left Q to T .

Since S lies below the line joining X and T, therefore T lies above the line joining S and X. On the other hand T lies below the line joing S and Y.

None let
$$t \longrightarrow s$$
. Since T is in the wedge in the pieture,
it follows that $T \longrightarrow S$ as $t \longrightarrow s$. Thus $\lim_{t \longrightarrow s^+} \varphi(t) = \varphi(s)$.
A similar argument would show that $\lim_{t \longrightarrow s^+} \varphi(t) = \varphi(s)$.
 $q.e.d.$

Penark: Suppose di, de,..., du are non-negative numbers
unde that dit...t dn=1, and Q: (a, b) → R a convex
function. It is easy to see by induction that for
two..., the G (a, b),
Q(Ži diti) ≤ Ži di Q(ti). (*)
The data (di), (ti) gives us a probability meanue d m
((a,b), X) where K is the Lebesgue T- algebra m (a,b), namely

$$\lambda(E) = \sum_{j=1}^{2} d_{ij}$$
 where Enfty..., the first meanue
int is clean that (*) is equivalent to saying

$$\varphi\left(\int_{(a,b)} t d\lambda\right) \leq \int_{(a,b)} \varphi(t) d\lambda.$$
 (**)

More generally we have the following:

Theorem (Jansen's inequality): Let
$$(X, M, \mu)$$
 be a measure space with
 $\mu(X)=1$, $f: X \longrightarrow (a,b)$ a measurable function and $Q(a,b) \longrightarrow \mathbb{R}$
a convex function. Then
 $Q\left(\int_X f d\mu\right) \leq \int_X (Q \circ f) d\mu$

Prof:

Let
$$t = \int_{X} f d\mu$$
. Then it is easy to see that $t \in (a, b)$.
[Wint: Use the fast that if σ is a non-jue measure on
(2, 4), and $g>0$ is a mille function on Z, then $\int_{Z} g d\sigma > 0$.
(How will you prove this?) Use also the fast that if $\sigma(z)=1$,
then for any constant C, $\int c d\sigma = C$.]
Let $g = sup \left\{ \frac{q(t)-cq(u)}{t-u} \right\} = c = C$.]

Then
$$\beta \leq \frac{\varphi(s) - \varphi(t)}{s - t}$$
 $\forall s \geq t.$ (++) (by (2))

To see this we first reed:
There is let p and g be a pair of orgingste exponents with

$$1 \le p \le \infty$$
. Let (X_5M, μ) be a meanine space, and fig
meaninable functions on X taking values in $C0.00$. Then
(A) (Hölder's inequality)
 $\int_X \pm g \, d\mu = \left\{ \int_X \pm^p d\mu \right\}^{Y_p} \left\{ \int_X g^{\pm} d\mu \right\}^{Y_q}$
(b) (Minkowski's inequality)
 $\left\{ \int_X (f + g)^p d\mu \right\}^{Y_p} \le \left\{ \int_X \pm^p d\mu \right\}^{Y_p} + \left\{ \int_X g^{\pm} d\mu \right\}^{Y_q}$
Remark: $4 \ \rho = g = 2$ then Hölder's inequality is the Camby Schway
inequality.
Not:
(a) Let $A = \int_X \pm^p d\mu$ and $B = \int_X g^{\pm} d\mu$. If either $A \propto B$
is so, then the Hölder inequality is clearly time. So assume
both A and B are finite. If $A = 0$, then clearly $f = D$ are,
and hence $\int_X \pm g \, d\mu = D$, and Hölden is trivially time. Similarly

$$F = \frac{f}{A}$$
 and $G = \frac{g}{B}$

Then

$$\int_{X} F^{p} d\mu = \int_{X} G^{p} d\mu = 1.$$

For x ∈ {F≠o} ∩ {Gi≠o} let r,s be real numbers

such that
$$e^{\frac{\pi}{4}} = F(x)$$
 and $e^{\frac{\pi}{4}} = G(x)$. Since $t \mapsto e^{t}$
is convex we have $e^{\frac{\pi}{4}} + \frac{1}{4}e^{t}$. This
means
 $F(x)G(x) \leq \frac{1}{p} F(x)^{p} + \frac{1}{4} G(x)^{q}$.
The above inequality is trivially true if $x \in \{F=0\} \cup \{b_{1}=0\}$,
and hence is true for all $x \in X$. Integrate which is get
 $\int_{X} F \cdot d_{y} \leq \frac{1}{p} \int F^{p} d_{y} + \frac{1}{4} \int G^{q} d_{y} = \frac{1}{p} + \frac{1}{4} = 1$.
Hölden's inequality follows easily:
(b). By Hölden we have
 $\int_{X} f(f+q)^{p-1} d_{y} \leq \left\{\int_{X} f^{p} A_{y}\right\}^{p} \left\{\int_{X} (f+q)^{(p-1)} s d_{y}\right\}^{\frac{1}{2}}$.
 $= \left\{\int_{X} f^{p} d_{y}\right\}^{\frac{1}{p}} \left\{\int_{X} (f+q)^{p} d_{y}\right\}^{\frac{1}{2}}$.

Euclering the role of f and g we get

$$\int_{X} g (f+g)^{p-1} d\mu \leq \left\{ \int_{X} g^{p} d\mu \right\}^{\gamma_{p}} \left\{ \int_{X} (f+g)^{p} d\mu \right\}^{\gamma_{q}}$$
Adding the two inequalities we get

$$k \times \times) - \int_{X} (f+g)^{p} d\mu \leq \left(\left\{ \int_{Y} f^{p} d\mu \right\}^{\gamma_{p}} + \left\{ \int_{X} g^{p} d\mu \right\}^{\gamma_{p}} \right) \left\{ \int_{X} (f+g)^{p} d\mu \right\}^{\gamma_{q}}$$

None Minkowski is clearly tone if either the left
side of Minkowski is job or its night side is as. So
let us assume
$$\int_X (f+p)^p d\mu \neq 0$$
 and that both
 $\int_X f^p d\mu$ as well as $\int_Q g^p d\mu$ are finite. Since $t t \rightarrow t^p$
is connex, we see that $\left(\frac{f+q}{2}\right)^p \leq 1 f^p + 1 g^p$. This
means $\int_X (f+p)^p d\mu < \infty$. Hence $(****)$ yields

 $\left\{\int_{X} (f + g) d\mu \right\}^{1 - \frac{1}{2}} \leq \left\{\int_{X} f^{p} d\mu \right\}^{\gamma_{p}} + \left\{\int_{X} g^{p} d\mu \right\}^{\gamma_{p}}.$ $\int_{X} (f + g)^{2} d_{\mu} \Big]^{\frac{1}{p}} \leq \left\{ \int_{X} f^{p} d_{\mu} \right\}^{\frac{1}{p}} + \left\{ \int_{X} g^{\frac{1}{p}} d_{\mu} \right\}^{\frac{1}{p}}.$ i-e 9.e.d.