It follows that, since RCRCR, that

$$m(R) = \delta_{i-1} \delta_{n} = vol R.$$

and hence once again we have

$$\mu(P') = k\mu(P).$$
Combining the two we see

$$\mu(P') = k(\mu) \quad \text{for } k \in O(1(0,\infty)).$$

$$\frac{1}{2} k_m T k, \quad k_m > 0 \quad \forall m, \quad k > 0, \quad \text{then dearly}$$

$$\frac{1}{2} \text{the rationalises } R=R(a; \quad k_m \delta_1, \quad \delta_{2,s}..., \quad \delta_n) \quad \text{increase to } R'.$$
Since k can be written as the increasing limit q
rationals this means

$$\mu(P') = \lim_{m \to \infty} \mu(P_m) = \lim_{m \to \infty} \lim_{m \to \infty} \mu(P) = k\mu(P).$$

$$\mu(a; \mathbf{k}, \delta_{1}, \dots, \mathbf{k}, \delta_{n}) = \mathbf{k}_{1} \dots \mathbf{k}_{n} \mu(a; \delta_{1}, \dots, \delta_{n}) \begin{cases} a \in \mathbb{R}^{N} \\ \mathbf{k}_{0} \neq 0 \quad \overline{v} = 1, \dots, n \\ \delta_{0} \neq 0 \quad \overline{v} = 1, \dots, n \end{cases}$$

$$\mu(Q) = \delta^n \mu(Q_0) = c\delta^n = cm(Q_0)$$
. The result follows
from earlier results (see Proposition towards the end of the
previous lecture).

Proportion: Let
$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
 be a linear transformation, 2 lite
Lebregne σ -algebra on \mathbb{R}^n and m the Lebesgne measure on \mathbb{R}^n .
Let $\mu: \lambda \longrightarrow \mathbb{C}0,\infty$] be the measure
 $\mu(E) := m(T(E)), \quad E \in \mathcal{I}.$
Then there exists a non-negative scalar $\Delta(T)$ such that
 $\mu(E) := D(T)m(E).$

Prof :

Clearly
$$\mu$$
 is translation inversiont. From the periods
result, if $BT = \mu(Q_D)$ then $\mu(E) = D(T)m(E)$ for $E \in \mathbb{B}(X)$.
Fir a general $E \in A$, since \mathbb{R}^n is σ -compared, there exists on F_D
set A and a G_S bet B such that $A \subset E \subset B$ and $m(B-A) = 0$.
Norso A, B are Boul sets and hence $\mu(A) = D(T)m(A)$ and
 $\mu(B) = D(T)m(B)$. Thus
 $D(T)m(E) = D(T)m(A) = \mu(A) \leq \mu(E) \leq \mu(B) = D(T)m(B) = D(T)m(E)$.
Bt follows that $\mu(E) = D(T)m(E)$.

$$S(Q_{0}) = A \sqcup (B + e_{2})$$

