It follows that, since $R^{0} \subset R \subset \bar{R}$, then

$$
m(R)=\delta_{1} \ldots \delta_{n}=\operatorname{vol} R .
$$

In font for any S s.t. $R^{0} \subset S \subset \bar{R}, m(S)=\delta_{1} \ldots \delta_{n}$. In particular the faces of \bar{R} have Lebegne measure 0 .
This in thorn means:
Ropoition: For $i=1, \ldots, n$ let $s_{i}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \mid a_{i}=0\right\}$.
Then $m\left(S_{i}\right)=0$.
Poof: This is an immediate consequence of the constable additivity A m, and the fort that the fern i \bar{R} have m measme zeno.

Translation invariant necaures:
As we have seen, m is trondation inveniart on \mathcal{R}.
Suppose μ is trandation invariant on $B(x)$.
Let $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{u}$ and $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ be positime real numbers. Let $R=R\left(a ; \delta_{1}, \ldots, \delta_{n}\right)$. Fix a positree real umber k k, and wite $R^{\prime}=R\left(a ; k \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$.

If $k \in N$, then R^{\prime} cam be written as the disjoint amin

$$
R^{\prime}=R \cup\left(R+e_{1}\right) \cup\left(R+2 e_{1}\right) \cup \ldots \cup\left(R+(R-1) e_{1}\right)
$$

where $e_{1}=(1,0, \ldots, 0)$. Since μ is translation invariant, we have

$$
\mu\left(R^{\prime}\right)=k \mu(R)
$$

If $k=\frac{1}{l}$, then R cam be written as the disjoint union of $R^{\prime}+\frac{j}{l} e_{1}, j=0, \ldots, l-1$, whence $\mu(R)=\ell \mu\left(R^{\prime}\right)$,
and hence once agni we have

$$
\mu\left(R^{\prime}\right)=k_{\mu}(R) .
$$

Combining the two we see

$$
\mu\left(R^{\prime}\right)=k(\mu) \quad \text { for } \quad k \in \mathbb{Q} \cap(0, \infty) \text {. }
$$

If $k_{m} \uparrow k, k_{m}>0 \forall m, k>0$, then dearly the rectangles $R_{m}=R\left(a ; k_{m} \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ increase to R^{\prime}.
Since k cam be written as the increasing limit of rationals this means

$$
\mu\left(R^{\prime}\right)=\lim _{m \rightarrow \infty} \mu\left(R_{m}\right)=\lim _{m \rightarrow \infty} k_{m} \mu(R)=k \mu(R)
$$

A little thought chorus that this argument can be repented with δ_{1} replaced by δ_{j} for any j. Hence we have
$(*)-\mu\left(a ; k_{1} \delta_{1}, \ldots, k_{n} \delta_{n}\right)=k_{1} \ldots k_{n} \mu\left(a ; \delta_{1}, \ldots, \delta_{n}\right)\left\{\begin{array}{l}a \in \mathbb{R}^{n} \\ k_{i}>0 \quad i=1, \ldots, n \\ \delta_{i}>0 \quad i=1, \ldots, n\end{array}\right.$

In view of (O) we have the following

Theorem: Let $Q_{0}=Q(0 ; 1)$ and $c=\mu\left(Q_{0}\right)$ where μ is a translation invariant positive measure on $B(x)$

$$
\mu=\left.\mathrm{cm}\right|_{B(x)}
$$

where m is the Lebesgue mensme on \mathbb{R}^{n}.
Prob: by $(*)$ we see that for a δ-box Q, we have
$\mu(Q)=\delta^{n} \mu\left(Q_{0}\right)=c \delta^{n}=c m\left(Q_{0}\right)$. The result follows from earlier results (see Proposition towards the end of the previous lecture).

Proposition: Let $\tau: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear tranofomiation, \mathcal{L} the Lebsegue σ-algehres on \mathbb{R}^{n} and m the Lebesgue measure on \mathbb{R}^{n}.
Let $\mu: \mathcal{L} \longrightarrow[0, \infty]$ be the measure

$$
\mu(E):=m(\tau(E)), \quad E \in \mathcal{L} .
$$

Then then exists a non-regatine scalar $\Delta(T)$ such that

$$
\mu(E)=\Delta(T) m(E) .
$$

Prof?:
Clearly μ is trandation invariant. From the peavins result, if $D T=\mu\left(Q_{0}\right)$ then $\mu(E)=\Delta(T) m(E)$ for $E \in B(X)$. For a general $E \in \mathcal{L}$, slice \mathbb{R}^{n} is σ-compent, there exists on F_{σ} set A and a G_{δ} set B sunk that $A \subset E \subset B$ and $m(B-A)=0$. Now A, B are Boil sets and lone $\mu(A)=\Delta C D m(A)$ and $\mu(B)=\Delta(T) m(B)$. Thus

$$
\Delta(T) m(E)=\Delta(T) m(A)=\mu(A) \leq \mu(E) \leq \mu(B)=\Delta(T) m(B)=\Delta(T) m(E) .
$$

It follows that $\mu(E)=\Delta(T) m(E)$.

Remount: It is easy to see that $\Delta(T)=|\operatorname{det} T|$ by seeing tres is bone for dementany linear transformations and then noting that every linear tanafomation is the product of elementary linear tiomofomations. In quester detail, it is clean that
$\Delta\left(T_{1} T_{2}\right)=\Delta\left(T_{1}\right) \Delta\left(T_{2}\right)$ for any two linen thansfoncalions T_{1} and T_{2} and $\left|\operatorname{det}\left(T_{1} T_{2}\right)\right|=\left|\operatorname{det} T_{1}\right|\left|\operatorname{det} T_{2}\right|$. Now T is the poona of the following loper of limen trousformalion S
(a) $\left\{S_{e}, \ldots, \operatorname{Sen}\right\}$ is a permutation of $\left\{e_{1}, \ldots, e_{n}\right\}$
(b) $\quad S e_{1}=\alpha e_{1}, \quad T_{e_{i}}=e_{i}, i=2, \ldots, n$
(c) $\quad S e_{1}=e_{1}+e_{2}, \quad S e_{i}=e_{i}, \quad e=2, \ldots, n$.

For S are in (a), $S\left(Q_{0}\right)=Q_{0}$, whence $\Delta(S)=1$. On the other hand (Set $S)$ is also equal to 1 .

For (b) $S\left(Q_{0}\right)=R(0 ; \alpha, 1, \ldots, 1)$ if $\alpha>0$. Hence $m\left(S\left(Q_{0}\right)\right)=\alpha=|\operatorname{det} S|$. If $\alpha=0, S\left(Q_{0}\right)$ lies in $\left\{\left(a_{1}, \ldots, a_{1}\right) \mid a_{1}=0\right\}$, whence from an earlier Proposition, $m\left(S\left(Q_{0}\right)\right)$, lie., $\Delta(S)=0$. On the other hand if $\alpha=0$, clearly dit $S=0$. If $\alpha<0$, then $S\left(Q_{0}\right)$ is sandwiched between $(\alpha, 0) \times[0,1) \times \ldots \times[0,1)$ and $[\alpha, 0] \times[0,1] \times \ldots \times[0,1]$ and hence $m\left(S\left(Q_{0}\right)\right)=-\alpha=|\alpha|=|\operatorname{det} S|$. Thus $\Delta(S)=|\operatorname{det} S|$ in this case too.
(C) In this care $S\left(Q_{D}\right)$ is a disjoint union

$$
S\left(\theta_{0}\right)=A U\left(B+e_{2}\right)
$$

 where

$$
A=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid 0 \leq x_{1} \leqslant x_{2}, 0 \leqslant x_{i}<1, i=2, \ldots, n\right\}
$$ and

$$
\left.\begin{array}{l|r}
\text { re-arnangement } B=\left\{\left(x_{1}, \ldots, x_{n}\right)\right. & 0 \leqslant x_{2}<x_{1}, 0<x_{1}<1 \\
0 \leqslant x_{i}<1, i=3, \ldots, n
\end{array}\right\}
$$

Thun $m\left(S\left(Q_{0}\right)\right)=m(A)+m\left(B+e_{1}\right)$

$$
\begin{aligned}
& =m(A)+m(B) \quad \text { (by trandation invariance of } m \text {) } \\
& =m(A \cup B)=m\left(Q_{0}\right)=1 . \Rightarrow \Delta(T)=1=\mid \text { et } S \mid .
\end{aligned}
$$

This proves the assertion.

