Lecture 10

The Lebesgue measure on R. As mentioned caller, let $\Lambda: C_{c}(\mathbb{R}^{n}) \longrightarrow \mathbb{C}$ be given by $M = \int f(t_1, \dots, t_n) dt_1 \dots dt_n$, $f \in C_e(\mathbb{R}^n)$ where the night side is the Riemann integral of f over a closed rectangle containing Suppf. The answer is dealy independent of the restange of integration closen Let (d, m) be the conceptonding complete J-algebra and measure. I is called the Lebcogne 5- algebra on Th and m: 2 -> [0,05] the Lebeogue meanne. If we wich to emphasize the role of n, we write her and put for I and p. Since every open set in R" is r- compart, m is clearly regular. For a = (a,,.., an) E RM, let Ca: Cc (RM) -> Ce (RM) be $(T_{a}f)(x) = f(x-a)$ zeR". Then $\int_{\mathbb{R}^{n}} (T_{n+1}) (t_{1}, \dots, t_{n}) dt_{1} \dots dt_{n} = \int_{\mathbb{R}^{n}} f(t_{1}, \dots, t_{n}) dt_{1} \dots dt_{n}.$ (1) — In fast, if I1,..., In are closed bounded intervals in R and R= I.x...x In, then, as is well-known

From the above and (1) and the construction of
$$(z, m)$$
 from Λ ,
it is easy to see that
 $m(E+a) = m(E)$, $E \in \mathcal{X}$.

To understand the Libraque measure we need to work out
measures of S-boxes and various reitangles. Recall that in
the last class we showed that B(X) has a subset
$$\Omega$$
 consisting
of 2^{n} -boxes, new, such that if μ, ν are Borel measures
s.t., $\mu(q) = \nu(q) < \omega$ HQER, then $\mu = \nu$. Working out m(q)
needs up to approximate χ_{Q} by elements of $C_{c}(\mathbb{R}^{n})$. The
prelime displayed is of graph of fecc(\mathbb{R}^{n})
with $\overline{Q} \prec f \prec V$, where V is the
gen set outside the blue rationgle.
As the blue vitangle approaches \overline{Q}

Notations and terminology

Fix a = (ay ..., an) & Rⁿ. Pecall that a 5-box with corner a, for a positive real number a, is $Q(a,\delta) = [a_i, a_i + \delta] \times \dots \times [a_n, a_n + \delta].$ he also define the closed 5-box with omen a, \$ (a,5) and the open 5-box with corner a, 8° (a, 5) to be \$ (a, 5) = [a, a, +5] x ... x [an, an+5] Q° (a, 5) = (a, a, + 5) x ... x (an, an+ 5). and There are of course many sets between Q' (a, d) and Q (a, d) other than Q(a, 5) but for the moment these three boxes are all we need $\mathfrak{G}^{\circ}(\mathfrak{a}, \mathfrak{F}) \subset \mathfrak{G}(\mathfrak{a}, \mathfrak{F}) \subset \overline{\mathfrak{G}}(\mathfrak{a}, \mathfrak{F}).$ If a and 5 are understood from the contest, we write Q°, Q, J for there boxes Hove generally, if Si, 52, ..., So are pointime real munder, we have R (a; 51, ..., 5n):= [a, a, + 5,) x ... x [an, an+ 5n) R =R(a; δι,..., δn):= [a, q, +δ1] ×... × [an, an+δn] R = R° = R° (a; 5, ..., 5n):= (a, a, + 5,) x ... x (an, an+ 5n). R(a; S1,..., Sn) is called the (S1,..., En) - rentangle with comer a, R (a; Si,..., Sn) the closed (Si,..., Sn) - restangle with corner a, and R° (a; Si,..., Sn) the open (Sis..., Sn) - reitange with corner a.

Apprecimations to characteristic functions:
For an interval I = ta,b] C R let

$$k_{I}^{(m)} : R \longrightarrow R$$
, m6 IN
and $k_{I}^{(m)} : R \longrightarrow R$, m6 N
be the functions
 $t_{I}^{(m)} : R \longrightarrow R$, m6 N
 $t_{I}^{(m)} : R \longrightarrow R$, m6 N

$$\frac{1}{k_{I}^{(m)}(t)} = \begin{cases} 1, & at_{I} \leq t \leq b - 1, \\ mt - ma, & a \leq t \leq a + 1, \\ -mt + mb, & b - 1 \leq t \leq b \\ 0 & otherwise \end{cases}$$

and