The Lebesgue measure on \mathbb{R}^{n}
As mentioned cartier, lect

$$
\Lambda: c_{e}\left(\mathbb{R}^{n}\right) \longrightarrow \mathbb{C}
$$

be given by

$$
\Lambda f=\int_{\mathbb{R}^{n}} f\left(t_{1}, \ldots, t_{n}\right) d t_{1} \cdots d t_{n}, f \in C_{e}\left(\mathbb{R}^{n}\right)
$$

where the right side is the Riemann interval if f oven a closed rectangle containing suppl. The answer is deadly independent of the rectangle of integration chosen.

Let (d, m) be the comesponding complete σ-algelina and measure. \mathcal{L} is called the Lebesgue σ-alg chr on \mathbb{R}^{n} and $m: \mathcal{L} \longrightarrow[0, \infty]$ the Lebeogne measure. If we neigh to emphasize the role of n, we write $\mathcal{L n}$ and μ_{n} for \mathcal{L} and μ.

Since every open est in \mathbb{R}^{n} is r-comport, m is clearly regular.
For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$, let $\tau_{a}: C_{c}\left(\mathbb{R}^{n}\right) \longrightarrow C_{c}\left(\mathbb{R}^{n}\right)$ be

$$
(\tau a f)(x)=f(x-a) \quad x \in \mathbb{R}^{n} .
$$

Then
(1) $\int_{\mathbb{R}^{n}}\left(\tau_{n} f\right)\left(t_{1}, \ldots, t_{n}\right) d t_{1} \ldots d t_{n}=\int_{\mathbb{R}_{n}} f\left(t_{1}, \ldots, t_{n}\right) d t_{1} \ldots d t_{n}$.

In fort, if I_{1}, \ldots, In are closed bounded intervals in \mathbb{R} and $R=I\left(x \ldots x I_{n}\right.$, then, as is uell-benonon

$$
\int_{R} f\left(t_{1}, \ldots, t_{n}\right) d t_{1}, \ldots d t_{n}=\int_{R+a}\left(\tau_{a} f\right)\left(t_{1}, \ldots, t_{n}\right) d t_{1} \ldots d t_{n} .
$$

In somenshat greaten detail, fer $f \in C_{e}\left(\mathbb{R}^{n}\right), k$ a compact subset $A \mathbb{R}^{4}$, and V an open subset of \mathbb{R}^{u} we have

$$
\begin{aligned}
& \text { - } \quad \operatorname{Supp} \tau_{a f}=(\operatorname{Supp} f)+a \\
& \text { - }\left\{g \in C_{c}\left(\mathbb{R}^{n}\right) \mid g<V+a\right\}=\left\{g=c_{a} h \mid h \in C_{c}\left(\mathbb{R}^{n}\right), h \prec V\right\} \\
& \text { - }\left\{g \in C_{c}\left(\mathbb{R}^{n}\right) \mid k+a<g\right\}=\left\{g=c_{a} h \mid h \in C_{c}\left(\mathbb{R}^{n}\right), k<h\right\}
\end{aligned}
$$

From the above and (1) and the construction of (x, m) from n, it is easy to see that

$$
m(E+a)=m(E), \quad E \in \mathcal{L} .
$$

To understand the Lebesgue measure we need to wok out measures of δ-boxes and various rectangles. Recall thant in the last class we showed that $B(x)$ has a sulsd Ω consisting of 2^{-n}-boxes, $n \in \mathbb{N}$, sunk that if μ, ν ore Bore meamues s.t., $\mu(Q)=\nu(Q)<\infty \forall Q \in \Omega$, then $\mu=\nu$. Waking out $m(Q)$ needs us to approximate X_{Q} by elements of $C_{c}\left(\mathbb{R}^{n}\right)$. The pectize dis played is of graph of $f \in C_{C}\left(\mathbb{R}^{W}\right)$ with $\bar{Q} \prec f \prec V$, where V is the open set outside the blue rectangle. As the blue entangle approoulies \bar{Q} $f \rightarrow X_{\bar{Q}} .(\bar{Q}=\cos m e, Q)$

Notations and terminology
Fix $a=\left(a_{1,}, \ldots, a_{n}\right) \in R^{u}$. Recall that a δ-box with comer a, for a positive real number a, is

$$
Q(a, \delta)=\left[a_{1}, a_{1}+\delta\right) \times \cdots \times\left[a_{n}, a_{n}+\delta\right) .
$$

We also define the closed δ-box with comer $a, \bar{Q}(a, \delta)$ and the open δ-box with cover $a, Q^{\circ}(a, \delta)$ is be

$$
\bar{Q}(a, \delta)=\left[a_{1}, a_{1}+\delta\right] \times \ldots \times\left[a_{n}, a_{n}+\delta\right]
$$

and $\quad Q^{0}\left(a_{,} \delta\right)=\left(a_{1}, a_{1}+\delta\right) \times \ldots \times\left(a_{n}, a_{n}+\delta\right)$.
There are of course many sets between $Q^{\delta}(a, \delta)$ and $\bar{Q}(a, \delta)$ other than $Q(a, \delta)$ but for the moment these three boxes are all we need.

$$
Q^{0}(a, \delta) \subset Q(a, \delta) \subset \bar{Q}(a, \delta) .
$$

If a and δ are understood from the context, we write Q°, Q, \bar{Q} fer there boxes.

Mire generally, if $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ are pisiture veal numbers, we have

$$
\begin{aligned}
& R=R\left(a ; \delta_{1}, \ldots, \delta_{n}\right):=\left[a_{1}, a_{1}+\delta_{1}\right) \times \ldots \times\left[a_{n}, a_{n}+\delta_{n}\right) \\
& \bar{R}=\bar{R}\left(a ; \delta_{1}, \ldots, \delta_{n}\right):=\left[a_{1}, a_{1}+\delta_{1}\right] \times \ldots \times\left[a_{n}, a_{n}+\delta_{n}\right] \\
& R^{0}=R^{0}\left(a_{j}, \delta_{1}, \ldots, \delta_{n}\right):=\left(a_{1}, a_{1}+\delta_{1}\right) \times \ldots \times\left(a_{n}, a_{n}+\delta_{n}\right) .
\end{aligned}
$$

$R\left(a ; \delta_{1}, \ldots, \delta_{n}\right)$ is called the $\left(\delta_{1}, \ldots, \delta_{n}\right)$-rectangle with conner a, $\bar{R}\left(a ; \delta_{1}, \ldots, \delta_{n}\right)$ the cased $\left(\delta_{1}, \ldots, \delta_{n}\right)$-rectangle with corner a, and $R^{0}\left(a ; \delta_{1}, \ldots, \delta_{n}\right)$ the open $\left(\delta_{1}, \ldots, \delta_{n}\right)$-rectangle with cover a.

We also deloris the volume $A B, \bar{R}, R^{0}$ ts be

$$
\operatorname{vol}(R)=\operatorname{vol}(\bar{R})=\operatorname{vol}\left(R^{0}\right)=\delta_{1} \delta_{2} \ldots \delta_{n} .
$$

Bores ave rectangles with all δ_{i} 's equal.
We spur call a $\left(\delta_{1}, \ldots, \delta_{n}\right)$-rectangle a rectangle with sides $\delta_{1}, \ldots, \delta_{n}$. A box is a rectangle ivith all sides equal.
For a δ - boxes Q,

$$
\operatorname{vol}(Q)=\delta^{n} .
$$

Approximations to chavartenstru functions:
For an interval $I=[a, b] \subset \mathbb{R}$ let

$$
\begin{aligned}
& K_{I}^{(m)}: \mathbb{R} \longrightarrow \mathbb{R}, \quad m \in \mathbb{N} \\
& k_{I}^{(m)}: \mathbb{R} \longrightarrow \mathbb{R}, \quad m \in \mathbb{N}
\end{aligned}
$$

be the frumelions

$$
\begin{cases}1, & a \leq t \leq b \\ m t-a m+1, & a-\frac{1}{m} \leq t<a \\ -m t+b m+1, & b<t \leq b+\frac{1}{m} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
k_{I}^{(m)}(t)=\left\{\begin{array}{cc}
1, & a+\frac{1}{m} \leq t \leq b-\frac{1}{m} \\
m t-m a, & a \leq t<a+\frac{1}{m} \\
-m t+m b, & b-\frac{1}{m}<t \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$

The graphs of $f^{(m)}$ and $k^{(m)}$ one below, slowing them to be appaximations to $X_{[a, b]}$ and $X_{(a, b)}$ reppatively.

None dearly

$$
\int_{\mathbb{R}} \mathcal{K}_{I}^{(m)}(t) d t=b-a+\frac{1}{m}
$$

and

$$
\int_{\mathbb{R}} k_{I}^{(m)}(t) d t=b-a-\frac{1}{m}
$$

where the integrals ave Riernomn integrals.

We can get something similar in higher dionensious. as follows.

Suppose $a \in \mathbb{R}^{n}$, say y $a=\left(a_{1}, \ldots, a_{n}\right)$. For $R=R\left(a ; \delta_{1}, \ldots, \delta_{n}\right)$
as in (*) $\left(i . e, \delta_{i}>0, i=1, \ldots, n\right)$ define $I_{k}=\left[a_{k}, a_{k}+\delta_{k}\right]$,
$k=1, \cdots, n$ and sit

$$
x_{R}^{(m)}\left(t_{1}, \ldots, t_{n}\right)=\prod_{j=1}^{n} x_{I_{j}}^{(m)}\left(t_{j}\right), \quad m \in N
$$

and

$$
k_{R}^{(m)}\left(t_{1}, \ldots, t_{n}\right)=\prod_{j=1}^{n} k_{I_{j}}^{(m)}\left(t_{j}\right), \quad m \in \mathbb{N} .
$$

Then $\mathcal{K}^{(m)} \longrightarrow X_{\bar{R}}$ and $k^{(m)} \longrightarrow X_{R 0}$
as $m \longrightarrow \infty$, where $\bar{R}=\bar{R}\left(a ; \delta_{1}, \ldots, \delta_{n}\right)$ and

$$
R^{0}=R^{0}\left(a ; \delta_{1}, \ldots, \delta_{n}\right) .
$$

Staundand Riemam integnation gniis us:

$$
\begin{aligned}
\Lambda\left(y_{R}^{(m)}\right) & =\int_{\mathbb{R}^{n}} \psi_{R}^{(m)}\left(t_{1}, \ldots, t_{n}\right) d t_{1} \ldots d t_{n} \\
& =\prod_{j=1}^{n} \int_{\mathbb{R}} \mathcal{L}_{I_{j}}^{(m)}\left(t_{j}\right) d t_{j} \\
& =\prod_{j=1}^{n}\left(\delta_{j}+\frac{1}{m}\right), \quad m \in \mathbb{N} .
\end{aligned}
$$

Similarly

$$
A\left(k_{R}^{(m)}\right)=\prod_{j=1}^{n}\left(\delta_{j}-\frac{1}{n}\right), \quad n \in \mathbb{N} .
$$

Let \mathcal{L} be the Lebisgue σ-aly on \mathbb{R}^{n} and m the Lebisgure measme on \mathbb{R}^{n} and $n=C_{e}\left(\mathbb{R}^{n}\right) \longrightarrow \mathbb{C}$ the Riemann integnal funtional oi.e., $\quad a_{f}=\int_{\mathbb{R}_{4}} f\left(t_{1}, \ldots, t_{n}\right) d t_{1} \ldots d t_{n}, f \in c_{c}\left(\mathbb{R}^{n}\right)$. Now

$$
\begin{aligned}
m(\bar{R}) & =\int_{\mathbb{R}^{n}} x_{\bar{R}} d m \\
& =\lim _{m \rightarrow \infty} \int_{\mathbb{R}^{n}} X_{R}^{(m)} d m \quad(\text { by } D C T) \\
& =\lim _{m \rightarrow \infty} \cap\left(x_{R}^{(m)}\right) \\
& =\delta_{1} \ldots \delta_{n}
\end{aligned}
$$

Simianly $m\left(R^{0}\right)=\delta_{1} \ldots \delta_{n}$.

