Using property (iii) of 5-algebras.
(c) An EM for n=1,2,3,..., then (An EM.
This is seen by observing that

$$\left(\bigwedge_{n=1}^{\infty} A_n \right)^C = \bigcup_{n=1}^{\infty} A_n^C$$
.
Since M is dored under formation of constable
Unione and taking complements, the assertion follows.
(d) A, BEM, then A-BEM where
 $A-B= \{ x \in X \mid x \in A \text{ and } x \notin B \}$.
since A-B= A(B^C, the assertion is clear.

Theorem: Let
$$Y = Z$$
 be topological spaces and $g: Y \longrightarrow 2$ a
continuous map.
(a) $9Y$ X is a topological gave and $f: X \longrightarrow Y$ a
continuous funtion, then $h = g \circ f$ is continuous
(b) $9Y$ X is a méasurable space and $f: X \longrightarrow Y$ a measurable
map, then $g \circ f$ is measurable.
 $X \xrightarrow{f} Y$
 $h = g \circ f, h: X \longrightarrow 2$).

Proof: Let V be an open set in 2. For both parts (a)
and (b) we have

$$h^{-1}(V) = f^{-1}(g^{-1}(V))$$
. (*)
For parts (a), since and g are continuous, $g^{-1}(V)$ and
 $f^{-1}(g^{-1}(V))$ are both , proving h is continuous via (3).
For parts (b), since g^{-1} continuous $g^{-1}(V)$ is open in Y,
and since f is measur , $f^{-1}g^{-1}(V)$ is measurable in X. By
(*) we are done.
Theorem: Let u and v be measurable functions on a
measurable space X, and let $\overline{\Phi}: \mathbb{P}^2 \longrightarrow Y$ be a continuous map
from the plane \mathbb{P}^2 into topological space Y. Define
 $h(v) = \overline{\Phi}(u(x v(v)))$
for x e X. Then $h: X \longrightarrow$ is measurable.
Pooff:
Let $g: X \longrightarrow \mathbb{P}^2$ be the valued sends a point x in X
to the point (u(x), $v(v)$) in 1². We have a commutative
diagram
 $X \longrightarrow \mathbb{P}^2$

None if A, B are subsets
$$A$$
, then clearly
 $g^{-1}(A \times B) = u^{-1}(A) v^{-1}(B)$.

In particular, if
$$M$$
 is the 5 else underlying the
masure space X, and I, J are intervals in R ,
then $g^{-1}(I \times J) = u^{-1}(I) \cap v^{-1}(J)$ and the right eide
lies in M since $u^{-1}(I) \in M$ $v^{-1}(J) \in M$.
Now the collection & of open stangles I × J in \mathbb{R}^2 -
with I and J baring national points is a constable
collection. Let $V \subseteq \mathbb{R}^2$ be an set. If $x \in V$, choose
a member V_X of R such that $V_X \subseteq V$. Clearly
 $V = \bigcup_{X \in V}$.
Now the collection $\{V_X\}$ is could arice R is combable,
and hence can be re-labelled as $\{V_{1,2}, \dots, V_{n}, \dots, \}$. Thus
 $g^{-1}(V) = g^{-1}(\bigcup_{N=1}^{O} V_{n}) = \bigcup_{n=1}^{O} g^{-1}(V_{n})$.
Since V_n is an open redengle, $g^{-1}(n) \in M + n \in \mathbb{N}$.
Hence $g^{-1}(V) \in M$, since M is under constable.
unions.

Then Q is continuous. Define

$$d = q (f + \chi_E).$$

Note this makes since for $f(x) + \chi_E(x)$ is neuerzes
for any $\chi \in \chi$. Now $f + \chi_E$ is measurable by (e),
since f and χ_E are. Fultre q is continuous. Since
continuous functions f measurable functions are
measurable, it follows that z is measurable. Note
that
 $d(x) = \int_{1}^{1} iq \chi \xi E$.

Thus
$$|\alpha| = 1$$
. Clearly,
 $f = \alpha \cdot |f|$.
 $q.e.d.$