HW 7

The usual instructions about margins apply. All vector spaces are over \mathbb{C} (though most results are true over \mathbb{R} too). So if we talk about a normed linear space, or an inner product space, the assumption is that the underlying field is \mathbb{C} .

Banach spaces.

- (1) Let X be a Banach space. For $x \in X$ let $J(x): X^* \to \mathbb{C}$ be the map $J(x)(\Lambda) = \Lambda(x)$. Show that J(x) is a bounded linear functional on X^* . Show that the resulting map $J: X \to X^{**}$ is an isometric isomorphism *into* X. (It need not be onto but you don't have to prove that.)
- (2) A Banach space is *separable* if it has a countable dense subset. Prove that ℓ^p is separable for $1 \le p < \infty$, but that ℓ^∞ is not.

Monotone classes and algebras. Let X be a set. A collection of subsets $\mathfrak{M} \subset \mathscr{P}(X)$ is said to be *monotone class* if it is closed under countable monotone unions or intersections, i.e., if $A_n, B_n \in \mathfrak{M}$ $(n \in \mathbb{N})$ are such that

$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \ldots, \quad B_1 \supset B_2 \supset \cdots \supset B_n \supset \ldots,$$

then

$$\bigcup_n A \in \mathfrak{M}, \quad \bigcap_n B_n \in \mathfrak{M}.$$

A collection \mathcal{A} of subsets of X is called an *algebra* if it is closed under pairwise union and under complementation. Note that if \mathcal{A} is an algebra, X and \emptyset are in \mathcal{A} and \mathcal{A} is closed under pairwise intersection.

- (3) Let \mathcal{A} be an algebra of subsets of X and \mathfrak{M} the smallest monotone class containing \mathcal{A} . Show that $\mathfrak{M} = \sigma(\mathcal{A})$, where $\sigma(\mathcal{A})$ is the σ -algebra generated by \mathcal{A} .
- (4) Let (X, \mathscr{S}) and (Y, \mathscr{T}) be measurable spaces. A measurable rectangle on this data is a subset of $X \times Y$ of the form $A \times B$ with $A \in \mathscr{S}$ and $B \in \mathscr{T}$. Let $\mathscr{R} = \mathscr{R}(\mathscr{S}, \mathscr{T})$ be the collection of finite unions of measurable rectangles. Show that \mathscr{R} is an algebra.
- (5) With notations as above, show that every element of \mathscr{R} can be written as a finite disjoint union of measurable rectangles.

Finitely additive measures. Let $\Sigma = \mathscr{P}(\mathbb{N})$. Let S be the space of all finitely additive, complex valued, set functions on Σ that are bounded: that is, μ in S means (i) $\mu(\emptyset) = 0$,

- (ii) $\sup\{|\mu(E)|: E \subset \mathbb{N}\} < \infty,$
- (iii) $\mu(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} \mu(E_i)$ whenever E_1, \dots, E_n are disjoint elements of Σ .

 ${\cal S}$ is a linear space with the operations

$$(\alpha_1\mu_1 + \alpha_2\mu_2)(E) = \alpha_1\mu_1(E) + \alpha_2\mu_2(E)$$

for all $\mu_1, \mu_2 \in S$, all complex numbers α_1, α_2 , and $E \in \Sigma$.

(6) Prove that for $\mu \in S$, the number

$$\|\mu\| = \sup\{\sum_{i=1}^{n} |\mu(E_i)| : \mathbb{N} = \bigcup_{i=1}^{n} E_i; E_i \text{ disjoint}\}$$

is finite, and that this norm makes S into a Banach space.

- (7) Prove that S is isometrically isomorphic to $(\ell^{\infty})^*$.
- (8) Let J be the canonical isometry of ℓ^1 into $(\ell^{\infty})^*$ (see Problem 1). Prove that $\mu \in J(\ell^1)$ if and only if μ is countably additive.