HW 7

The usual instructions about margins apply. All vector spaces are over \mathbb{C} (though most results are true over \mathbb{R} too). So if we talk about a normed linear space, or an inner product space, the assumption is that the underlying field is \mathbb{C}.

Banach spaces.

(1) Let X be a Banach space. For $x \in X$ let $J(x): X^{*} \rightarrow \mathbb{C}$ be the map $J(x)(\Lambda)=\Lambda(x)$. Show that $J(x)$ is a bounded linear functional on X^{*}. Show that the resulting map $J: X \rightarrow X^{* *}$ is an isometric isomorphism into X. (It need not be onto but you don't have to prove that.)
(2) A Banach space is separable if it has a countable dense subset. Prove that ℓ^{p} is separable for $1 \leq p<\infty$, but that ℓ^{∞} is not.

Monotone classes and algebras. Let X be a set. A collection of subsets $\mathfrak{M} \subset$ $\mathscr{P}(X)$ is said to be monotone class if it is closed under countable monotone unions or intersections, i.e., if $A_{n}, B_{n} \in \mathfrak{M}(n \in \mathbb{N})$ are such that

$$
A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset \ldots, \quad B_{1} \supset B_{2} \supset \cdots \supset B_{n} \supset \ldots,
$$

then

$$
\bigcup_{n} A \in \mathfrak{M}, \quad \bigcap_{n} B_{n} \in \mathfrak{M}
$$

A collection \mathcal{A} of subsets of X is called an algebra if it is closed under pairwise union and under complementation. Note that if \mathcal{A} is an algebra, X and \emptyset are in \mathcal{A} and \mathcal{A} is closed under pairwise intersection.
(3) Let \mathcal{A} be an algebra of subsets of X and \mathfrak{M} the smallest monotone class containing \mathcal{A}. Show that $\mathfrak{M}=\sigma(\mathcal{A})$, where $\sigma(\mathcal{A})$ is the σ-algebra generated by \mathcal{A}.
(4) Let (X, \mathscr{S}) and (Y, \mathscr{T}) be measurable spaces. A measurable rectangle on this data is a subset of $X \times Y$ of the form $A \times B$ with $A \in \mathscr{S}$ and $B \in \mathscr{T}$. Let $\mathscr{R}=\mathscr{R}(\mathscr{S}, \mathscr{T})$ be the collection of finite unions of measurable rectangles. Show that \mathscr{R} is an algebra.
(5) With notations as above, show that every element of \mathscr{R} can be written as a finite disjoint union of measurable rectangles.

Finitely additive measures. Let $\Sigma=\mathscr{P}(\mathbb{N})$. Let S be the space of all finitely additive, complex valued, set functions on Σ that are bounded: that is, μ in S means
(i) $\mu(\emptyset)=0$,
(ii) $\sup \{|\mu(E)|: E \subset \mathbb{N}\}<\infty$,
(iii) $\mu\left(\cup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} \mu\left(E_{i}\right)$ whenever E_{1}, \cdots, E_{n} are disjoint elements of Σ.
S is a linear space with the operations

$$
\left(\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}\right)(E)=\alpha_{1} \mu_{1}(E)+\alpha_{2} \mu_{2}(E)
$$

for all $\mu_{1}, \mu_{2} \in S$, all complex numbers α_{1}, α_{2}, and $E \in \Sigma$.
(6) Prove that for $\mu \in S$, the number

$$
\|\mu\|=\sup \left\{\sum_{i=1}^{n}\left|\mu\left(E_{i}\right)\right|: \mathbb{N}=\cup_{i=1}^{n} E_{i} ; E_{i} \text { disjoint }\right\}
$$

is finite, and that this norm makes S into a Banach space.
(7) Prove that S is isometrically isomorphic to $\left(\ell^{\infty}\right)^{*}$.
(8) Let J be the canonical isometry of ℓ^{1} into $\left(\ell^{\infty}\right)^{*}$ (see Problem 1). Prove that $\mu \in J\left(\ell^{1}\right)$ if and only if μ is countably additive.

