The usual instructions about margins apply. All vector spaces are over \mathbb{C} (though most results are true over \mathbb{R} too). So if we talk about a normed linear space, or an inner product space, the assumption is that the underlying field is \mathbb{C}.

Bounded linear operators. Let $T: X \rightarrow Y$ be a linear operator between normed linear space. T is said to be bounded if there is a finite constant $M \geq 0$ such that $\|T x\| \leq M\|x\|$ for all x in X. It is easy to see that T is bounded if and only if it is continuous. This will be discussed later in the course. If T is bounded, its norm $\|T\|$ is defined to be:

$$
\|T\|=\sup \{\|T x\|:\|x\| \leq 1\} .
$$

It is quite easy to see that $\|T\|$ can also be described in three other ways, namely

- $\|T\|=\sup \{\|T x\|:\|x\|=1\}$,
- $\|T\|=\sup \left\{\frac{\|T x\|}{\|x\|}: x \in V \backslash\{0\}\right\}$,
- $\|T\|=\inf M$, where M ranges over real numbers such that $\|T x\| \leq M\|x\|$.

Bounded linear operators from X to Y with the above norm form a normed linear space denoted $B(X, Y)$.
(1) Show that if Y is a Banach space, then so is $B(X, Y)$.
(2) Let Z be a compact Hausdorff space and μ a Borel measure on Z such that $\mu(Z)<\infty$. Regard $(C(Z)$ as a normed linear space in the usual way, namely via $\|\cdot\|_{\infty}: C(Z) \rightarrow[0, \infty)$, where $\|f\|_{\infty}=\max _{z \in Z}|f(z)|$. Show that $\Lambda: C(Z) \rightarrow \mathbb{C}$ given by $\Lambda f=\int_{Z} f d \mu$ is a bounded linear operator. Calculate $\|\Lambda\|$.
Inner Product Spaces and Hilbert Spaces. Let V be an inner product space. We say that x and y in V are orthogonal if $\langle x, y\rangle=0$. The zero vector is orthogonal to all vectors in V. We say $x \in V$ is orthogonal to a subspace M of V if $\langle x, m\rangle=0$ for every $m \in M$. If an x and y are orthogonal we write $x \perp y$. If x is orthogonal to a subspaces M of V, we write $x \perp M . M^{\perp}$ denotes the set of all vectors in V orthogonal to M.
In what follows you may assume the Cauchy-Schwarz inequality:

$$
|\langle x, y\rangle| \leq\|x\|\|y\| \quad(x, y \in V)
$$

as well as other relations you have seen in past homework assignments and quizzes, for example the Parallelogram Law

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

and the Polarization Identity

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right) .
$$

(3) Let $x \in V$. Show that the linear functional $\varphi_{x}: V \rightarrow \mathbb{C}$ given by $y \mapsto\langle y, x\rangle$ is a bounded linear functional and $\left\|\varphi_{x}\right\|=\|x\|$.
(4) Let M be a subspace of V. (Note that M is an inner product space in its own right.)
(a) Show that M^{\perp} is also a subspace of V. Is it a closed subspace of V ?
(b) Show that if V is a Hilbert space and M a closed subspace, then M^{\perp} is closed and $V=M \bigoplus M^{\perp}$.
(5) Let x be a vector in V and let M be a subspace of V.
(a) Show that a point m_{0} in M is closest to x amongst all points m in M is and only if $x-m_{0} \in M^{\perp}$. (Note: There may no "closest point to x " in M, in which case the "if and only if" statement says that there is no $m_{0} \in M$ such that $x-m_{0} \in M^{\perp}$.)
(b) Suppose m, m^{\prime} are elements of M such that $x-m$ and $x-m^{\prime}$ lie in M^{\perp}. Show that $m=m^{\prime}$. Conclude that there is at most one point m_{0} in M such that $\left\|x-m_{0}\right\|=\inf _{m \in M}\|x-m\|$.

Now suppose M is a complete subspace of V, i.e., suppose M is a subspace which is a Hilbert space (even if V is not). Then one can show (and we will in class when we do Functional Analysis) that for every x in V there exists $P x \in M$ such that $x-P x \in M^{\perp}$. Let us assume this fact in the exercises which follow. The assignment $x \mapsto P x$ gives us a map $P: V \rightarrow M$.
(6) With $P: V \rightarrow M$ as above, show that $P: V \rightarrow M$ is a bounded linear transformation and $\|P\|=1$ if $M \neq 0$.
(7) (Riesz Representation for Hilbert spaces) Suppose V is a Hilbert space and $\lambda: V \rightarrow \mathbb{C}$ is a bounded linear functional.
(a) Show that $(\operatorname{ker} \lambda)^{\perp}$ is one dimensional if λ is non-zero.
(b) Show that there exists a unique element $x_{\lambda} \in V$ such that $\lambda y=\langle y, x\rangle$ for all $y \in V$. [Hint: Look for x_{λ} in the one dimensional space in part (a) above.]
(c) Is $\lambda \mapsto x_{\lambda}$ a linear transformation from $B(V, \mathbb{C})$ to V ?

Measure Theory. In what follows, (X, \mathscr{M}, μ) is a measure space. For $p \in[1, \infty)$, $L^{p}(\mu)$ is the space of equivalence classes of functions $f: X \rightarrow \mathbb{C}$ with $\int_{X}|f|^{p} d \mu<$ ∞, the equivalence being $f \sim g$ if $f=g$ a.e. [μ]. The norm $\|\cdot\|_{p}$ on $L^{p}(\mu)$ is $\|f\|_{p}=\left(\int_{X}|f|^{p} d \mu\right)^{\frac{1}{p}}$. With this norm $L^{p}(\mu)$ is a Banach space (this will be proven in class). The $p=2$ case is interesting because $L^{2}(\mu)$ is a Hilbert Space, the inner product being $\langle f, g\rangle=\int_{X} f \bar{g} d \mu$ for $f, g \in L^{2}(\mu)$. Clearly the Hilbert space norm agrees with the $L^{2}(\mu)$ norm just described. In what follows assume the facts we stated above. As usual, feel free to use Cauchy-Schwarz.
(8) Suppose μ is finite (i.e., $\mu(X)<\infty$).
(a) Show that if f is bounded then $f \in L^{p}(\mu)$ for all $p \geq 1$.
(b) Show that if $f \in L^{2}(\mu)$ then $f \in L^{1}(\mu)$.
(9) Let $f \in L^{1}(\mu), f \geq 0$, and let ν be the measure on \mathscr{M} given by

$$
\nu(E)=\int_{E} f d \mu \quad(E \in \mathscr{M})
$$

Suppose $\mu(E)=0$ whenever $\nu(E)=0$ (the reverse implication is clearly true).
(a) Show that $\mu(\{x \mid f(x)=0\})=0$ so that f^{-1} is well-defined a.e. $[\mu]$ as well as a.e. $[\nu]$.
(b) Show that if $g \in L^{1}(\mu)$ then $g f^{-1} \in L^{1}(\nu)$ and

$$
\int_{X} g d \mu=\int_{X} g f^{-1} d \nu
$$

(10) Suppose μ is finite on \mathscr{M} and ν is a measure on \mathscr{M} such that $\nu \leq \mu$.
(a) Show that if $f \in L^{p}(\mu)$ then $f \in L^{p}(\nu)$ for $p \in[1, \infty)$.
(b) Show that $f \mapsto \int_{X} f d \nu$ is a bounded linear functional on $L^{p}(\mu)$.
(c) Show that there exists a function $f \in L^{1}(\mu), f \geq 0$, such that

$$
\nu(E)=\int_{E} f d \mu \quad(E \in \mathscr{M})
$$

