
HW 5

The usual instructions about margins apply. All vector spaces are over C (though
most results are true over R too). So if we talk about a normed linear space, or an
inner product space, the assumption is that the underlying field is C.

Bounded linear operators. Let T : X → Y be a linear operator between normed
linear space. T is said to be bounded if there is a finite constant M ≥ 0 such that
‖Tx‖ ≤ M‖x‖ for all x in X. It is easy to see that T is bounded if and only if it
is continuous. This will be discussed later in the course. If T is bounded, its norm
‖T‖ is defined to be:

‖T‖ = sup{‖Tx‖ : ‖x‖ ≤ 1}.
It is quite easy to see that ‖T‖ can also be described in three other ways, namely

• ‖T‖ = sup{‖Tx‖ : ‖x‖ = 1},
• ‖T‖ = sup

{
‖Tx‖
‖x‖ : x ∈ V r {0}

}
,

• ‖T‖ = inf M , where M ranges over real numbers such that ‖Tx‖ ≤M‖x‖.
Bounded linear operators from X to Y with the above norm form a normed linear
space denoted B(X,Y ).

(1) Show that if Y is a Banach space, then so is B(X,Y ).

(2) Let Z be a compact Hausdorff space and µ a Borel measure on Z such
that µ(Z) <∞. Regard (C(Z) as a normed linear space in the usual way,
namely via ‖ · ‖∞ : C(Z) → [0,∞), where ‖f‖∞ = maxz∈Z |f(z)|. Show
that Λ: C(Z) → C given by Λf =

∫
Z
fdµ is a bounded linear operator.

Calculate ‖Λ‖.

Inner Product Spaces and Hilbert Spaces. Let V be an inner product space.
We say that x and y in V are orthogonal if 〈x, y〉 = 0. The zero vector is orthogonal
to all vectors in V . We say x ∈ V is orthogonal to a subspace M of V if 〈x,m〉 = 0
for every m ∈ M . If an xand y are orthogonal we write x ⊥ y. If x is orthogonal
to a subspaces M of V , we write x ⊥ M . M⊥ denotes the set of all vectors in V
orthogonal to M .

In what follows you may assume the Cauchy-Schwarz inequality :

|〈x, y〉| ≤ ‖x‖‖y‖ (x, y ∈ V )

as well as other relations you have seen in past homework assignments and quizzes,
for example the Parallelogram Law

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

and the Polarization Identity

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
.
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(3) Let x ∈ V . Show that the linear functional ϕx : V → C given by y 7→ 〈y, x〉
is a bounded linear functional and ‖ϕx‖ = ‖x‖.

(4) Let M be a subspace of V . (Note that M is an inner product space in its
own right.)
(a) Show that M⊥ is also a subspace of V . Is it a closed subspace of V ?
(b) Show that if V is a Hilbert space and M a closed subspace, then M⊥

is closed and V = M
⊕
M⊥.

(5) Let x be a vector in V and let M be a subspace of V .
(a) Show that a point m0 in M is closest to x amongst all points m in M

is and only if x −m0 ∈ M⊥. (Note: There may no “closest point to
x” in M, in which case the “if and only if” statement says that there
is no m0 ∈M such that x−m0 ∈M⊥.)

(b) Suppose m,m′ are elements of M such that x −m and x −m′ lie in
M⊥. Show that m = m′. Conclude that there is at most one point
m0 in M such that ‖x−m0‖ = infm∈M ‖x−m‖.

Now suppose M is a complete subspace of V , i.e., suppose M is a subspace which
is a Hilbert space (even if V is not). Then one can show (and we will in class
when we do Functional Analysis) that for every x in V there exists Px ∈ M such
that x − Px ∈ M⊥. Let us assume this fact in the exercises which follow. The
assignment x 7→ Px gives us a map P : V →M .

(6) With P : V → M as above, show that P : V → M is a bounded linear
transformation and ‖P‖ = 1 if M 6= 0.

(7) (Riesz Representation for Hilbert spaces) Suppose V is a Hilbert space and
λ : V → C is a bounded linear functional.
(a) Show that (kerλ)⊥ is one dimensional if λ is non-zero.
(b) Show that there exists a unique element xλ ∈ V such that λy = 〈y, x〉

for all y ∈ V . [Hint: Look for xλ in the one dimensional space in
part (a) above.]

(c) Is λ 7→ xλ a linear transformation from B(V, C) to V ?

Measure Theory. In what follows, (X,M , µ) is a measure space. For p ∈ [1,∞),
Lp(µ) is the space of equivalence classes of functions f : X → C with

∫
X
|f |pdµ <

∞, the equivalence being f ∼ g if f = g a.e. [µ]. The norm ‖ · ‖p on Lp(µ) is

‖f‖p = (
∫
X
|f |pdµ)

1
p . With this norm Lp(µ) is a Banach space (this will be proven

in class). The p = 2 case is interesting because L2(µ) is a Hilbert Space, the inner
product being 〈f, g〉 =

∫
X
fḡdµ for f, g ∈ L2(µ). Clearly the Hilbert space norm

agrees with the L2(µ) norm just described. In what follows assume the facts we
stated above. As usual, feel free to use Cauchy-Schwarz.

(8) Suppose µ is finite (i.e., µ(X) <∞).
(a) Show that if f is bounded then f ∈ Lp(µ) for all p ≥ 1.
(b) Show that if f ∈ L2(µ) then f ∈ L1(µ).

(9) Let f ∈ L1(µ), f ≥ 0, and let ν be the measure on M given by

ν(E) =

∫
E

fdµ (E ∈M ).

2



Suppose µ(E) = 0 whenever ν(E) = 0 (the reverse implication is clearly
true).
(a) Show that µ({x | f(x) = 0}) = 0 so that f−1 is well-defined a.e. [µ] as

well as a.e. [ν].
(b) Show that if g ∈ L1(µ) then gf−1 ∈ L1(ν) and∫

X

gdµ =

∫
X

gf−1dν.

(10) Suppose µ is finite on M and ν is a measure on M such that ν ≤ µ.
(a) Show that if f ∈ Lp(µ) then f ∈ Lp(ν) for p ∈ [1,∞).
(b) Show that f 7→

∫
X
fdν is a bounded linear functional on Lp(µ).

(c) Show that there exists a function f ∈ L1(µ), f ≥ 0, such that

ν(E) =

∫
E

fdµ (E ∈M ).
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