HW 5

The usual instructions about margins apply. All vector spaces are over C (though
most results are true over R t0o). So if we talk about a normed linear space, or an
inner product space, the assumption is that the underlying field is C.

Bounded linear operators. Let T: X — Y be a linear operator between normed
linear space. T is said to be bounded if there is a finite constant M > 0 such that
|ITz|| < M||z| for all z in X. Tt is easy to see that T is bounded if and only if it
is continuous. This will be discussed later in the course. If T"is bounded, its norm
|IT|| is defined to be:

[T = sup{[|Tz| : ||=]| < 1}.
It is quite easy to see that ||T|| can also be described in three other ways, namely

o |7 = sup{||T|| : [l] =1},
o |7 :sup{% tr eV {0}}7

e |T|| = inf M, where M ranges over real numbers such that | Tz| < M|z||.

Bounded linear operators from X to Y with the above norm form a normed linear
space denoted B(X,Y).

(1) Show that if Y is a Banach space, then so is B(X,Y).

(2) Let Z be a compact Hausdorff space and p a Borel measure on Z such
that ©(Z) < oco. Regard (C(Z) as a normed linear space in the usual way,
namely via || - |loo: C(Z) — [0,00), where || f]loc = max,ecz |f(2)]. Show
that A: C(Z) — C given by Af = fZ fdp is a bounded linear operator.
Calculate ||A]].

Inner Product Spaces and Hilbert Spaces. Let V' be an inner product space.
We say that 2 and y in V' are orthogonal if (x,y) = 0. The zero vector is orthogonal
to all vectors in V. We say x € V is orthogonal to a subspace M of V if (x,m) =0
for every m € M. If an zand y are orthogonal we write x L y. If z is orthogonal
to a subspaces M of V, we write x L M. M~ denotes the set of all vectors in V/
orthogonal to M.

In what follows you may assume the Cauchy-Schwarz inequality:

(@, o) < ll=llllyll  (z,y €V)

as well as other relations you have seen in past homework assignments and quizzes,
for example the Parallelogram Law

Iz +yll* + llz = ylI> = 2(lz 1> + lly[*)
and the Polarization Identity

1 . . ) .
(@y) =7 (e +yl” = llo —ylI” + iz +iyl* —ile —iyl) .



(3) Let € V. Show that the linear functional ¢, : V' — C given by y — (y, z)
is a bounded linear functional and ||| = |||

(4) Let M be a subspace of V. (Note that M is an inner product space in its
own right.)
(a) Show that M= is also a subspace of V. Is it a closed subspace of V?
(b) Show that if V' is a Hilbert space and M a closed subspace, then M=+
is closed and V = M @ M+.

(5) Let « be a vector in V and let M be a subspace of V.
(a) Show that a point mg in M is closest to x amongst all points m in M
is and only if 2 — mg € M*. (Note: There may no “closest point to
2” in M, in which case the “if and only if” statement says that there
is no mg € M such that  —mg € M*.)
(b) Suppose m,m’ are elements of M such that z — m and  — m’ lie in
M+. Show that m = m/. Conclude that there is at most one point

mo in M such that || — mo|| = infenr ||z — m]|.

Now suppose M is a complete subspace of V, i.e., suppose M is a subspace which
is a Hilbert space (even if V' is not). Then one can show (and we will in class
when we do Functional Analysis) that for every z in V there exists Px € M such
that * — Pz € M~*. Let us assume this fact in the exercises which follow. The
assignment x — Px gives us amap P: V — M.

(6) With P: V. — M as above, show that P: V — M is a bounded linear
transformation and ||P|| =1 if M # 0.

(7) (Riesz Representation for Hilbert spaces) Suppose V is a Hilbert space and
A: V' — C is a bounded linear functional.

(a) Show that (ker A\)* is one dimensional if A is non-zero.

(b) Show that there exists a unique element x € V such that Ay = (y, =)
for all y € V. [Hint: Look for z, in the one dimensional space in
part (a) above.]

(¢) Is A = xy a linear transformation from B(V, C) to V?

Measure Theory. In what follows, (X, .#, 1) is a measure space. For p € [1, 00),
LP(u) is the space of equivalence classes of functions f: X — C with [ |f[Pdp <
00, the equivalence being f ~ ¢ if f = g a.e.[p]. The norm || - ||, on LP(u) is
£l = ([ |f|pd,u)%. With this norm LP(u) is a Banach space (this will be proven
in class). The p = 2 case is interesting because L?(u) is a Hilbert Space, the inner
product being (f,g) = fX fgdu for f,g € L*(u). Clearly the Hilbert space norm
agrees with the L?(u) norm just described. In what follows assume the facts we
stated above. As usual, feel free to use Cauchy-Schwarz.

(8) Suppose p is finite (i.e., u(X) < 00).
(a) Show that if f is bounded then f € LP(u) for all p > 1.
(b) Show that if f € L?(u) then f € L(p).

(9) Let f € L'(u), f >0, and let v be the measure on .# given by

v(E) = [Efdu (EeA).
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Suppose p(FE) = 0 whenever v(E) = 0 (the reverse implication is clearly

true).

(a) Show that u({z | f(z) =0}) = 0 so that f~1 is well-defined a.e. [u] as
well as a.e. [V].

(b) Show that if g € L*(u) then gf =t € L'(v) and

/gdu:/ gf tdv.
X X

(10) Suppose p is finite on .# and v is a measure on .# such that v < p.
(a) Show that if f € LP(u) then f € LP(v) for p € [1,00).
(b) Show that f — [ fdv is a bounded linear functional on L”(u).
(c) Show that there exists a function f € L'(u), f > 0, such that

v(E) = [Efdu (E e A).



