
HW 4

General comments: To help the TA mark the HW, please leave margins on
the left, and space between each answer. These spaces are often used by markers
to make comments (short ones in the margin, and more general ones after your
answer).

Inner Product Spaces. Let K be either R or C and V a vector space over K.
Recall that an inner product on V is a map

〈·, ·〉 : V × V → K

such that for x, y, and z in V and α ∈ K the following conditions are satisfied.

• Positive Definiteness:

〈x, x〉 ≥ 0

〈x, x〉 = 0⇔ x = 0

• Conjugate linearity:

〈x, y〉 = 〈y, x〉
• Linearity in the first argument:

〈αx, y〉 = α〈x, y〉
〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

An inner product space over K is a vector space over K with an inner product. If
(V, 〈·, ·〉) is an inner product space, the map

‖ · ‖ : V → R

given by

‖x‖ =
√
〈x, x〉 (x ∈ V )

is a norm on V . If the inner product space V is a Banach space with respect
to this norm, it is called a Hilbert Space. In what follows you may assume the
Cauchy-Schwarz inequality :

|〈x, y〉| ≤ ‖x‖‖y‖ (x, y ∈ V ).

(1) Let V be an inner product space. Show that the map ‖ · ‖ defined above is
a norm on V .

(2) (Geometry in Inner Product Spaces)
(a) (Parallelogram Law) Show that in any inner product space

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).
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(b) (Polarization Identity) Show that in any inner product space over C

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
which expresses the inner product in terms of the norm.

(c) Use (a) or (b) to show that the norm on C([0, 1]) does not come from
an inner product. Recall that “the norm” on C([0, 1]) is

‖ · ‖∞ : C([0, 1])→ [0, ∞)

given by ‖f‖∞ = maxx∈[0,1] |f(x)|, f ∈ C([0, 1]).

Functions of Bounded Variation. There is a natural generalisation of the no-
tion of monotone functions on an interval I, viz., the notion of functions of bounded
variation.

Definition: Let D : a = x0 < x1 < . . . < xn = b be a partition of I = [a, b]. For a
function f : I → R define

V (f, D) =

n∑
i=1

|f(xi)− f(xi−1)|

V (f, I) = sup
D
V (f, D).

The function f is said to be of bounded variation on I if V (f, I) <∞. We denote
the space of functions of bounded variation on I by BV (I).

(3) Show that BV (I) is a vector space over R with the obvious notion of addi-
tion and scalar multiplication.

(4) Let J1 = [a, b] and J2 = [b, c] and J = [a, c]. Show that V (f, J) =
V (f, J1) + V (f, J2) for every function f : J → R.

Lebesgue measure on R. Let Λ: Cc(R) → C be given by Λf =
∫∞
−∞ f(t)dt,

where the right side is the Riemann integral over any closed interval containing
Supp(f). Λ is clearly a positive linear functional on Cc(R). According to what we
have been doing in class (Riesz Representation Theorem, or Stone’s Theorem), we
get a σ-algebra L on R containing B(X) and a measure m : L → [0,∞] which is
finite on compact sets, complete . . . (read the properties) such that Λf =

∫
R fdm

for f ∈ Cc(R). The σ-algebra L is called the Lebesgue σ-algebra on R, and m
is called the Lebesgue measure on R. In what follows you may assume that finite
and countable sets E ⊂ R are null (i.e. m(E) = 0), that m(a, b) = m([a, b)) =
m((a, b]) = m([a, b]) = b − a for a < b, a, b ∈ R, and that m is “translation
invariant”. i.e., m(E + a) = m(E), E ∈ L and a ∈ R.

(5) Suppose {sn} is a sequence of positive numbers such that
∑∞

n=1 1/sn <∞.
Show that if {xn} is a sequence of real numbers then the series

f(x) =

∞∑
n=1

e−sn|xn−x|

converges a.e. [m].
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