
HW 3

Problems 1–3 are due by Tuesday August 28 in class. The remaining problems,
viz., 4–11 are fair game for a quiz in your tutorial on August 29.

General comments: To help the TA mark the HW, please leave margins on
the left, and space between each answer. These spaces are often used by markers
to make comments (short ones in the margin, and more general ones after your
answer).

Notations, conventions, definitions. If X is a topological space, the support of
a continuous function f on X taking values in C is the closure of the set {f 6= 0}.
The symbol Cc(X) will denote the space of continuous complex valued functions
whose support is compact. If for a continuous function f we write f ≥ α, or
f ≤ α, or some other inequality, where α ∈ R, the implicit assumption is that f is
real-valued , and that the given inequality is true at every point of X.

Locally compact Hausdorff spaces. Recall that a topological space is called
locally compact if every point in it has a neighbourhood whose closure is compact.
We are interested in locally compact Hausdorff spaces. For our purposes the most
important theorem concerning such spaces is Urysohn’s Lemma which states that
if V is an open subset of a locally compact Hausdorff space, and K is a compact
subset of V , then there exists f ∈ Cc(X) such that 0 ≤ f ≤ 1 on X, f ≡ 1 on K,
and f ≡ 0 on X r V .

In the following three exercises, X is a locally compact Hausdorff space, σ a positive
measure on B(X) such that

(∗)
∫
X

fdσ <∞ (f ∈ Cc(X)),

and

(∗∗) σ(S) = inf{σ(V ) | S ⊂ V, V open} (S ∈ B(X)).

(1) (a) Show that σ(C) <∞ for every compact subset C.
(b) If τ is another measure on B(X) satisfying (∗), (∗∗) and the condition

that
∫
X
fdτ =

∫
X
fdσ for every f ∈ Cc(X), then τ(C) = σ(C) for

every compact subset C.

(2) Suppose σ satisfies the added hypothesis that

σ(V ) = sup
{∫

X

fdσ | f ∈ Cc(X), 0 ≤ f ≤ 1, support of f is in V
}

for every open V . Show that forevery compact C.

σ(C) = inf
{∫

X

fdσ | f ∈ Cc(X), 0 ≤ f ≤ 1, f ≡ 1 on C
}
.
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(3) Suppose σ satisfies the hypothesis of Problem (2), in addition to (∗) and
(∗∗). Show that

σ(V ) = sup{σ(C) | C ⊂ V, C compact}
for every open set V .

Riemann Integrals on [0, 1]. The integrals in this section are Riemann inte-
grals. In what follows, for a real-valued continuous function f on I = [0, 1] set

‖f‖1 =
∫ 1

0
|f(t)|dt and ‖f‖2 =

√∫ 1

0
|f(t)|2dt. You may assume the Cauchy-Schwarz

inequality ∣∣∣∫ 1

0

f(t)g(t)dt
∣∣∣ ≤ ‖f‖2‖g‖2

for continuous real-valued functions f and g on I. You may also use the parallelo-
gram law, namely

‖f + g‖22 + ‖f − g‖22 = 2
(
‖f‖22 + ‖g‖22

)
.

In the exercises below, {fn} is a sequence of continuous functions on I such that

0 ≤ fn ≤ 1, fn → 0 pointwise on I as n→∞, and limn→∞
∫ 1

0
fn(t)dt = L.

You are not allowed to use Lebesgue’s Dominated Convergence Theorem for this
set of problems since we are dealing with Riemann integrals.

(4) Show that ‖g‖1 ≤ ‖g‖2 for every continuous g on I.

(5) Let {kn} be a sequence of continuous real-valued functions on I such that
kn(t) ≥ 0 for all n ∈ N and all t ∈ I. Suppose p is a continuous function on
I such that p ≥ 0 on I and p(t) ≤

∑∞
n=1 kn(t) for every t ∈ I. Show that∫ 1

0

p(t)dt ≤
∞∑

n=1

∫ 1

0

kn(t)dt.

(Warning:
∑∞

n=1 kn(t) could diverge for some (even all) t ∈ I.)

(6) For each n ∈ N, let Cn be the convex hull of {fn, fn+1, . . . }, i.e., g ∈ Cn if
and only if g =

∑
j ajfmj

where aj ≥ 0 for all j, aj = 0 for all but a finite

number of j,
∑

j aj = 1, and mj ≥ n for all j. Let dn = inf{‖g‖2 | g ∈ Cn}.
Show {dn} is a non-decreasing convergent sequence of real numbers.

(7) Pick gn ∈ Cn, one for each n ∈ N. Show that 0 ≤ gn ≤ 1, gn → 0 pointwise

as n→∞, and limn→∞
∫ 1

0
gn(t)dt = L.

(8) For each n, pick gn ∈ Cn such that ‖gn‖2 ≤ dn + 1
n (this is possible by

definition of dn). Show using the parallelogram law, that

‖gn − gm‖2 → 0 as n,m→∞.
[Hint: Note that 1

2 (gn + gm) ∈ Cn if n ≤ m. Why?]

(9) Let {gn} be as in Problem (8). Show that there is a subsequence {hn} of
{gn} such that

∑∞
n=1 ‖hn − hn+1‖2 < ∞. For this sequence {hn}, show

that hn =
∑∞

m=n(hm − hm+1).
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(10) Let {hn} be as in Problem (9). Show that limn→∞
∫ 1

0
hn(t)dt = 0. (Use

Problem (5).) Conclude that L = 0.

(11) In our assumptions about {fn}, drop the assumption that the sequence

{
∫ 1

0
fn(t)dt} converges. Nevertheless show that it must converge, and that

the limit is 0. In other words, show that if {fn} is a sequence of continuous
functions on I, with 0 ≤ f ≤ 1, and such that fn → 0 pointwise on I as

n → ∞, then limn→∞
∫ 1

0
fn(t)dt = 0. Note that this is trivial once you

know DCT. However, it is not trivial to construct the Lebesgue measure,
and this set of problems gives a Riemann integral way of doing this. This
result is due to Arzela and possibly one of the inspirations for Lebesgue’s
DCT.
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