Graduate Analysis - I Midterm Exam Solutions

These are brief solutions. Your answers may require more details.

(1) Let $\nu = \{\nu_n\} \in \ell^{\infty}$. Show that the series $\sum_{n=1}^{\infty} \nu_n \xi_n$ is absolutely convergent for every $\{\xi_n\} \in \ell^1$. Show that $\{\xi_n\} \mapsto \sum_{n=1}^{\infty} \nu_n \xi_n$ defines a bounded linear functional $\Lambda_{\nu} \colon \ell^1 \to \mathbb{C}$ such that $\|\nu\|_{\infty} = \|\Lambda_{\nu}\|$, and that every $\Lambda \in (\ell^1)^*$ is equal to Λ_{ν} for a unique $\nu \in \ell^{\infty}$. [Hint: Look at $\Lambda(e_i), i \in \mathbb{N}$, where $e_i = \{\chi_{\{i\}}(n)\}, i \in \mathbb{N}$.]

Solution. For $\nu = {\nu_n} \in \ell^{\infty}$ and ${\xi_n} \in \ell^1$ we have,

$$\sum_{n} |\nu_n \xi_n| \le \|\nu\|_{\infty} \sum_{n} |\xi_n| = \|\nu\|_{\infty} \|s\|_1 < \infty.$$

This shows that $\sum_{n} \nu_n \xi_n$ is absolutely convergent and also that $\|\Lambda_{\nu}\| \leq \|\nu\|_{\infty}$. On the other hand, if e_i is the sequence given in the hint, then $\|e_i\|_1 = \sum_n \chi_{\{i\}}(n) = 1$, and $\Lambda_{\nu}(e_i) = \nu_i$, whence, by definition of $\|\Lambda_{\nu}\|$ we have:

$$|\nu_i| = |\Lambda_{\nu}(e_i)| \le ||\Lambda_{\nu}||_{\infty} ||e_i||_1 = ||\Lambda_{\nu}|| \qquad (i \in \mathbb{N}).$$

It follows that $\|\nu\|_{\infty} \leq \|\Lambda_{\nu}\|$. Thus $\|\nu\|_{\infty} = \|\Lambda_{\nu}\|$.

(2) Let H be a Hilbert space and $\Lambda \in H^*$. Show there exists a unique element $y_{\Lambda} \in H$ such that $\Lambda x = \langle x, y_{\Lambda} \rangle$. Show also that $||y_{\Lambda}|| = ||\Lambda||$. [You may use the fact that any closed subspace of a Hilbert space gives a decomposition of the Hilbert space into the direct sum of the closed subspace and its orthogonal complement. You don't have to prove the existence of such decompositions.]

Solution. If $\Lambda = 0$ there is nothing to prove. So assume $\Lambda \neq 0$. Let $M = \ker \Lambda$. Let $N = M^{\perp}$. Then M and N are closed subspaces of H, $H = M \oplus N$. Suppose $x \in N$ and $\Lambda(x) = 0$. Then $x \in N \cap M = \{0\}$. Hence $\Lambda|_N$ is injective. Since \mathbb{C} is one dimensional, this forces N to be either 0 or 1-dimensional. Since $\Lambda \neq 0$, therefore $M \neq H$, whence $N \neq 0$. Thus $\Lambda|_N$ is an isomorphism from N to \mathbb{C} . It follows there is a unique element $y_0 \in N$ such that $\Lambda(y_0) = 1$. Now if $x \in H$, then x = m + n with $m \in M$, $n \in N$ and this decomposition is unique. Moreover, since N is one-dimensional, $n = \alpha y_0$ for a unique $\alpha \in \mathbb{C}$. Thus $\Lambda(x) = \Lambda(m) + \alpha \Lambda(y_0) = 0 + \alpha = \alpha$. If

$$y_{\Lambda} := \frac{y_0}{\|y_0\|^2}$$

then $\langle x, y_{\Lambda} \rangle = \langle m, y_{\Lambda} \rangle + \alpha \langle y_0, y_{\Lambda} \rangle = \alpha ||y_0||^2 / ||y_0||^2 = \alpha = \Lambda(x)$. Thus $\langle x, y_{\Lambda} \rangle = \Lambda(x)$ for every $x \in H$. Uniqueness of y_{Λ} follows from the fact that if $z \in H$ satisfies $\langle x, z \rangle = 0$ for every $x \in H$ then z = 0 (indeed, setting x = z, we see that $||z||^2 = 0$).

It remains to prove $||y_{\Lambda}|| = ||\Lambda||$. Note that $||y_{\Lambda}|| = ||y_0||^{-1}$. This yields,

$$\|\Lambda\| \|y_{\Lambda}\| \ge \left|\Lambda(y_{\Lambda})\right|$$
$$= \|y_{0}\|^{-2}$$
$$= \|y_{\Lambda}\|^{2}.$$

It follows that $\|\Lambda\| \ge y_{\Lambda}$. By Cauchy-Schwarz, we have

$$\left|\Lambda(x)\right| = \left|\langle x, y_{\Lambda}\rangle\right| \le \|x\| \|y_{\Lambda}\|.$$

By definition of $\|\Lambda\|$, we then have $\|\Lambda\| \leq \|y_{\Lambda}\|$.

(3) Let m be the Lebesgue measure on [0, 1] and $\{f_n\}$ a sequence of bounded Lebesgue measurable functions on [0, 1] satisfying

$$\lim_{n \to \infty} \int_{[0,1]} |f_n|^3 dm = 0.$$

Prove that

Thus

$$\lim_{n \to \infty} \int_{[0,1]} \frac{f_n(x)}{\sqrt{x}} dm(x) = 0$$

Solution. Let $g: [0,1] \to [0,\infty]$ be the function given by $g(x) = x^{-1/2}$ for $x \in (0,1]$ and with $g(0) = \infty$. Since $f_n \in L^{\infty}(m)$ for all $n \in \mathbb{N}$, $||f_n||_3 < \infty$ for every natural number n. By Hölder's inequality we therefore have

$$\int_{[0,1]} \frac{f_n(x)}{\sqrt{x}} dm(x) \le \|f_n\|_3 \|g\|_{3/2}.$$

(Note $\frac{1}{3} + \frac{2}{3} = 1$.) Now since Riemann and Lebesgue integrals coincide for continuous functions on a compact interval and since g is continuous on [1/k, 1] for every $k \in \mathbb{N}$, we have

$$\|g\|_{3/2}^{\frac{3}{2}} = \lim_{k \to \infty} \int_{[1/k,1]} g^{\frac{3}{2}} dm = \lim_{k \to \infty} \int_{1/k}^{1} x^{-\frac{3}{4}} dx = 4.$$
$$\int_{[0,1]} \frac{f_n(x)}{\sqrt{x}} dm(x) \le 4^{\frac{2}{3}} \|f_n\|_3 \to 0 \qquad (\text{as } n \to \infty).$$

(4) Let μ be finite (i.e. $\mu(X) < \infty$). Show that for $1 \le p \le q$, $L^q(\mu) \subset L^p(\mu)$.

Solution. If $q = \infty$ and $f \in L^q(\mu)$ we have $\int_X |f|^p d\mu \leq ||f||_\infty^p \mu(X) < \infty$, since $||f||_\infty < \infty$ and $\mu(X) < \infty$. Thus in this case $f \in L^p(\mu)$. So assume $q < \infty$. Let $f \in L^p(\mu)$ with $p \leq q$. Let $A = \{|f| \leq 1\}$ and $B = \{|f| > 1\}$. Then $|f|^p \chi_A \leq \chi_A$ and $|f|^p \chi_B \leq |f|^q \chi_B \leq |f|^q$. Thus

$$\begin{split} \|f\|_p^p &= \int_X |f|^p \chi_A d\mu + \int_X |f|^p \chi_B d\mu \\ &\leq \int_X \chi_A d\mu + \int_X |f|^q d\mu \\ &= \mu(A) + \|f\|_q^q \\ &< \infty. \end{split}$$

(5) Let f be a complex measurable function on X such that $\int_E f d\mu = 0$ for every $E \in \mathcal{M}$. Show that f = 0 a.e. on X.

Solution. If μ is a finite measure then one can use Theorem 1.40 from Rudin (done in Tutorial 2). However, μ need not be finite. By breaking up f into its real and imaginary parts, it is enough to assume f is real. Let $A = \{f \ge 0\}$. Then $A \in \mathcal{M}$ and $\int_E f^+ d\mu = \int_{A \cap E} f d\mu = 0$ for every $E \in \mathcal{M}$. Similarly $\int_E f^- d\mu = 0$ for every $E \in \mathcal{M}$. Since $f = f^+ - f^-$, it is enough the assume $f \ge 0$. Let $E_n = \{f \ge 1/n\}$ for $n \in \mathbb{N}$. Then

$$0 = \int_{E_n} f d\mu \ge \frac{1}{n} \mu E_n \ge 0,$$

whence $\mu(E_n) = 0$ for every $n \in \mathbb{N}$. This means $\mu(\{f > 0\}) = 0$ since $\{f > 0\} = \bigcup_n E_n$. Since $f \ge 0$, this means f = 0 a.e. $[\mu]$.

(6) Let \mathscr{F} be a σ -algebra on a set Y, and $\phi: X \to Y$ a measurable map, i.e., $\phi^{-1}(S) \in \mathscr{M}$ for every $S \in \mathscr{F}$. Let $\nu: \mathscr{F} \to [0, \infty]$ be the measure given by $\nu(S) = \mu(\phi^{-1}(S))$, for $S \in \mathscr{F}$. Show that $f \in L^1(\nu)$ if and only if $f \circ \phi \in L^1(\mu)$ and that in this case

$$\int_Y f d\nu = \int_X (f \circ \phi) d\mu$$

holds. (You **don't** have to show that ν is a measure.)

Solution. For $S \in \mathscr{F}$ we have $\chi_{\phi^{-1}(S)} = \chi_S \circ \phi$ and hence

$$\int_{Y} \chi_{S} d\nu = \nu(S) = \mu \phi^{-1}(S) = \int_{X} \chi_{\phi^{-1}(S)} d\mu = \int_{X} (\chi_{S} \circ \phi) d\mu.$$

The asserted identity

(*)
$$\int_Y f d\nu = \int_X (f \circ \phi) d\mu$$

is therefore true for f a simple measurable non-negative non-negative function (whether f is in $L^1(\nu)$ or not). By MCT, (*) holds for every measurable f such that $f \ge 0$. Since

$$|f| \circ \phi = |f \circ \phi|,$$

it follows from (*) for non-negative functions that $f \in L^1(\nu)$ if and only if $f \circ \phi \in L^1(\mu)$. In this case, since $f^+ \ge 0$ and $f^- \ge 0$, we have

$$\int_Y f^+ d\nu = \int_X (f^+ \circ \phi) d\mu$$

and

$$\int_{Y} f^{-} d\nu = \int_{X} (f^{-} \circ \phi) d\mu.$$

Now $f^+ \circ \phi = (f \circ \phi)^+$ and $f^- \circ \phi = (f \circ \phi)^-$ and hence (*) holds whenever $f \in L^1(\nu)$ (or, equivalently, whenever $f \circ \phi \in L^1(\mu)$).

(7) Let $g: X \to [0, \infty)$ be measurable and $\nu: \mathscr{M} \to [0, \infty]$ the measure $E \mapsto \int_E g d\mu$. Let $A = \{g > 0\}$ and let $f \ge 0$ be a measurable function. Prove that

$$\int_E \frac{f}{g} \, d\nu = \int_{E \cap A} f d\mu$$

for every $E \in \mathcal{M}$.

Solution. We know that $\int_X h d\nu = \int_X h g d\mu$ for all measurable $h \ge 0$ by a theorem done in class. Now $\frac{1}{q}g = \chi_A$, since $\infty \cdot 0 = 0$. Hence

$$\int_E \frac{f}{g} d\nu == \int_X \frac{f}{g} \chi_E d\nu = \int_X f \chi_E \frac{1}{g} d\nu = \int_X f \chi_E \frac{1}{g} g d\mu = \int_X f \chi_E \chi_A d\mu = \int_{E \cap A} f d\mu.$$

The Lebesgue-Radon-Nikodym decomposition. In the next three problems μ and ν are *finite* measures on (X, \mathcal{M}) and $\sigma = \nu + \mu$. The aim of these problems is to prove the essential part of the Radon-Nikodym theorem.

(8) Show that there exists $g \in L^1(\sigma)$, $0 \le g \le 1$, such that

$$\mu(E) = \int_E g d\sigma$$

for every $E \in \mathcal{M}$. Show that g is unique as an element of $L^1(\mu)$.

Solution. The uniqueness of g follows from Problem 5. Indeed if \tilde{g} is another measurable function taking values in [0, 1] satisfying $\mu(E) = \int_E \tilde{g} d\sigma$ for every $E \in \mathcal{M}$, then

$$\int_E (g - \tilde{g}) d\sigma = 0$$

for every $E \in \mathcal{M}$, whence by Problem 5 $\sigma(\{x \mid g(x) \neq \tilde{g}(x)\}) = 0$. Since $\mu \leq \sigma$, we then get $\mu(\{x \mid g(x) \neq \tilde{g}(x)\}) = 0$. Thus g is unique when regarded as an element of $L^1(\mu)$.

For a measurable complex function f, let $||f||_{p,\nu}$, $||f||_{p,\mu}$, and $||f||_{p,\sigma}$ denote the p-norm of f with respect to the measures ν , μ , and σ respectively (e.g., $||f||_{p,\nu} = \left\{\int_X |f|^p d\nu\right\}^{1/p}$). Using simple non-negative functions, it is easy to see, since ν and μ are less than or equal to σ , that $||f||_{p,\nu} \leq ||f||_{p,\sigma}$ and $||f||_{p,\mu} \leq ||f||_{p,\sigma}$, whence if $f \in L^p(\sigma)$, then $f \in L^p(\mu)$. Thus $L^2(\sigma) \subset L^2(\mu) \subset L^1(\mu)$, the last inclusion being true by Problem 4. We therefore have a linear functional

$$\Phi\colon L^2(\sigma)\longrightarrow \mathbb{C}$$

given by $\Phi(f) = \int_X f d\mu$, $f \in L^2(\sigma)$. Now by Hölder (writing f = fg, with g = 1), we have $|\Phi(f)| \le ||f||_{2,\mu} \sqrt{\mu(X)} \le ||f||_{2,\sigma} \sqrt{\mu(X)}$

whence $\|\Phi\| \leq \sqrt{\mu(X)} < \infty$, i.e., Φ is bounded. By Problem 2 we have a unique $g \in L^2(\sigma)$ such that

$$\Phi(f) = \int_X fgd\sigma \qquad (f \in L^2(\sigma)).$$

Let $E \in \mathcal{M}$. Taking $f = \chi_E$, which is in $L^2(\sigma)$, for σ is finite, we get

$$\mu(E) = \int_E g d\sigma \qquad (E \in \mathscr{M})$$

Since $L^2(\sigma) \subset L^2(\mu) \subset L^1(\mu)$ (as we observed above) we see that $g \in L^1(\mu)$.

Finally, since σ is a finite measure, Theorem 1.40 of Rudin (see Tutorial 2 notes of Naageswaran) applies. If $E \in \mathscr{M}$ is such that $\sigma(E) > 0$ then

$$\frac{1}{\sigma(E)}\int_E gd\sigma = \frac{\mu(E)}{\sigma(E)} \in [0,1].$$

It follows (from the quoted result) that $B = \{x \mid g(x) \notin [0,1]\}$ has σ measure zero. One can redefine g by setting g(x) = 0 for x in the σ -null set B to get $0 \leq g(x) \leq 1$ for all $x \in X$.

(9) Let g be as in Problem (8). Let $S = \{g = 0\}$. Let ν_s be the measure on \mathcal{M} given by $\nu_s(E) = \nu(E \cap S)$. Show that $\nu_s \perp \mu$.

Solution. By definition of S, $g\chi_S = 0$, and hence

$$\mu(S) = \int_{S} gd\sigma = \int_{X} g\chi_{S}d\sigma = 0$$

On the other hand, if $A = X \setminus S$, then $\nu_s(A) = \nu(A \cap S) = \nu(\emptyset) = 0$. Thus $\nu_s \perp \mu$. \Box

- (10) Let g be as in Problem (8). Let $A = \{g > 0\}$ and let ν_a be the measure on \mathscr{M} given by $\nu_a(E) = \nu(E \cap A)$. Find a decreasing function $\phi \colon [0,1] \to [0,\infty]$ such that the following three properties hold:
 - (a) $\phi = p/q$, where p and q are real polynomials,
 - (b) $\{\phi = 0\} = \{1\},\$
 - (c) for $E \in \mathcal{M}$ the following holds:

$$\nu_a(E) = \int_E (\phi \circ g) d\mu.$$

Solution. Take ϕ to be the rational function

$$\phi(x) = \frac{1-x}{x}.$$

It is clear that ϕ satisfies (a) and (b). As for property (c), let $E \in \mathcal{M}$. We have,

$$\begin{split} \int_{E} (\phi \circ g) d\mu &= \int_{E} \frac{1-g}{g} d\mu \\ &= \int_{A \cap E} (1-g) d\sigma \quad \text{(by Problem 7)} \\ &= \sigma(A \cap E) - \int_{A \cap E} g d\sigma \\ &= \sigma(A \cap E) - \mu(A \cap E) \\ &= \nu(A \cap E) \\ &= \nu_{a}(E). \end{split}$$

Remark: This means that $\nu_a \ll \mu$. Note that $\nu = \nu_a + \nu_s$ since A and S are disjoint and their union is X. Thus we have a decomposition of ν into the sum of two measures, one absolutely continuous with respect to μ and the other singular with respect to μ . It is very easy to see that such a decomposition is unique.