
Graduate Analysis - I Midterm Exam Solutions

These are brief solutions. Your answers may require more details.

(1) Let ν = {νn} ∈ `∞. Show that the series
∑∞

n=1 νnξn is absolutely convergent for
every {ξn} ∈ `1. Show that {ξn} 7→

∑∞
n=1 νnξn defines a bounded linear functional

Λν : `1 → C such that ‖ν‖∞ = ‖Λν‖, and that every Λ ∈ (`1)∗ is equal to Λν for a
unique ν ∈ `∞. [Hint: Look at Λ(ei), i ∈ N, where ei = {χ{i}(n)}, i ∈ N.]

Solution. For ν = {νn} ∈ `∞ and {ξn} ∈ `1 we have,∑
n

|νnξn| ≤ ‖ν‖∞
∑
n

|ξn| = ‖ν‖∞‖s‖1 <∞.

This shows that
∑

n νnξn is absolutely convergent and also that ‖Λν‖ ≤ ‖ν‖∞. On the other
hand, if ei is the sequence given in the hint, then ‖ei‖1 =

∑
n χ{i}(n) = 1, and Λν(ei) = νi,

whence, by definition of ‖Λν‖ we have:

|νi| =
∣∣∣Λν(ei)

∣∣∣ ≤ ‖Λν‖∞‖ei‖1 = ‖Λν‖ (i ∈ N).

It follows that ‖ν‖∞ ≤ ‖Λν‖. Thus ‖ν‖∞ = ‖Λν‖. �

(2) Let H be a Hilbert space and Λ ∈ H∗. Show there exists a unique element yΛ ∈ H
such that Λx = 〈x, yΛ〉. Show also that ‖yΛ‖ = ‖Λ‖. [You may use the fact that any
closed subspace of a Hilbert space gives a decomposition of the Hilbert space into
the direct sum of the closed subspace and its orthogonal complement. You don’t
have to prove the existence of such decompositions.]

Solution. If Λ = 0 there is nothing to prove. So assume Λ 6= 0. Let M = ker Λ. Let
N = M⊥. Then M and N are closed subspaces of H, H = M ⊕ N . Suppose x ∈ N and
Λ(x) = 0. Then x ∈ N ∩M = {0}. Hence Λ|N is injective. Since C is one dimensional,
this forces N to be either 0 or 1-dimensional. Since Λ 6= 0, therefore M 6= H, whence
N 6= 0. Thus Λ|N is an isomorphism from N to C. It follows there is a unique element
y0 ∈ N such that Λ(y0) = 1. Now if x ∈ H, then x = m+ n with m ∈ M , n ∈ N and this
decomposition is unique. Morover, since N is one-dimensional, n = αy0 for a unique α ∈ C.
Thus Λ(x) = Λ(m) + αΛ(y0) = 0 + α = α. If

yΛ :=
y0

‖y0‖2
,

then 〈x, yΛ〉 = 〈m, yΛ〉 + α〈y0, yΛ〉 = α‖y0‖2/‖y0‖2 = α = Λ(x). Thus 〈x, yΛ〉 = Λ(x) for
every x ∈ H. Uniqueness of yΛ follows from the fact that if z ∈ H satisfies 〈x, z〉 = 0 for
every x ∈ H then z = 0 (indeed, setting x = z, we see that ‖z‖2 = 0).

It remains to prove ‖yΛ‖ = ‖Λ‖. Note that ‖yΛ‖ = ‖y0‖−1. This yields,

‖Λ‖‖yΛ‖ ≥
∣∣∣Λ(yΛ)

∣∣∣
= ‖y0‖−2

= ‖yΛ‖2.

It follows that ‖Λ‖ ≥ yΛ. By Cauchy-Schwarz, we have∣∣∣Λ(x)
∣∣∣ =

∣∣∣〈x, yΛ〉
∣∣∣ ≤ ‖x‖‖yΛ‖.

By definition of ‖Λ‖, we then have ‖Λ‖ ≤ ‖yΛ‖. �



(3) Let m be the Lebesgue measure on [0, 1] and {fn} a sequence of bounded Lebesgue
measurable functions on [0, 1] satisfying

lim
n→∞

∫
[0,1]
|fn|3dm = 0.

Prove that

lim
n→∞

∫
[0,1]

fn(x)√
x
dm(x) = 0.

Solution. Let g : [0, 1] → [0,∞] be the function given by g(x) = x−1/2 for x ∈ (0, 1] and
with g(0) = ∞. Since fn ∈ L∞(m) for all n ∈ N, ‖fn‖3 < ∞ for every natural number n.
By Hölder’s inequality we therefore have∫

[0,1]

fn(x)√
x
dm(x) ≤ ‖fn‖3‖g‖3/2.

(Note 1
3 + 2

3 = 1.) Now since Riemann and Lebesgue integrals coincide for continuous
functions on a compact interval and since g is continuous on [1/k, 1] for every k ∈ N, we
have

‖g‖
3
2

3/2 = lim
k→∞

∫
[1/k,1]

g
3
2dm = lim

k→∞

∫ 1

1/k
x−

3
4dx = 4.

Thus ∫
[0,1]

fn(x)√
x
dm(x) ≤ 4

2
3 ‖fn‖3 → 0 (as n→∞).

�

(4) Let µ be finite (i.e.µ(X) <∞). Show that for 1 ≤ p ≤ q, Lq(µ) ⊂ Lp(µ)..

Solution. If q =∞ and f ∈ Lq(µ) we have
∫
X |f |

pdµ ≤ ‖f‖p∞µ(X) <∞, since ‖f‖∞ <∞
and µ(X) <∞. Thus in this case f ∈ Lp(µ). So assume q <∞. Let f ∈ Lp(µ) with p ≤ q.
Let A = {|f | ≤ 1} and B = {|f | > 1}. Then |f |pχA ≤ χA and |f |pχB ≤ |f |qχB ≤ |f |q.
Thus

‖f‖pp =

∫
X
|f |pχAdµ+

∫
X
|f |pχBdµ

≤
∫
X
χAdµ+

∫
X
|f |qdµ

= µ(A) + ‖f‖qq
<∞.

�



(5) Let f be a complex measurable function on X such that
∫
E fdµ = 0 for every

E ∈M . Show that f = 0 a.e. on X.

Solution. If µ is a finite measure then one can use Theorem 1.40 from Rudin (done in
Tutorial 2). However, µ need not be finite. By breaking up f into its real and imaginary
parts, it is enough to assume f is real. Let A = {f ≥ 0}. Then A ∈ M and

∫
E f

+dµ =∫
A∩E fdµ = 0 for every E ∈ M . Similarly

∫
E f
−dµ = 0 for every E ∈ M . Since f =

f+ − f−, it is enough the assume f ≥ 0. Let En = {f ≥ 1/n} for n ∈ N. Then

0 =

∫
En

fdµ ≥ 1

n
µEn ≥ 0,

whence µ(En) = 0 for every n ∈ N. This means µ({f > 0}) = 0 since {f > 0} =
⋃
nEn.

Since f ≥ 0, this means f = 0 a.e. [µ]. �

(6) Let F be a σ-algebra on a set Y , and φ : X → Y a measurable map, i.e., φ−1(S) ∈M
for every S ∈ F . Let ν : F → [0,∞] be the measure given by ν(S) = µ(φ−1(S)),
for S ∈ F . Show that f ∈ L1(ν) if and only if f ◦φ ∈ L1(µ) and that in this case∫

Y
fdν =

∫
X

(f ◦φ)dµ

holds. (You don’t have to show that ν is a measure.)

Solution. For S ∈ F we have χφ−1(S) = χS ◦φ and hence∫
Y
χSdν = ν(S) = µφ−1(S) =

∫
X
χφ−1(S)dµ =

∫
X

(χS ◦φ)dµ.

The asserted identity

(∗)
∫
Y
fdν =

∫
X

(f ◦φ)dµ

is therefore true for f a simple measurable non-negative non-negative function (whether f
is in L1(ν) or not). By MCT, (∗) holds for every measurable f such that f ≥ 0. Since

|f |◦φ = |f ◦φ|,
it follows from (∗) for non-negative functions that f ∈ L1(ν) if and only if f ◦φ ∈ L1(µ). In
this case, since f+ ≥ 0 and f− ≥ 0, we have∫

Y
f+dν =

∫
X

(f+ ◦φ)dµ

and ∫
Y
f−dν =

∫
X

(f−◦φ)dµ.

Now f+ ◦φ = (f ◦φ)+ and f−◦φ = (f ◦φ)− and hence (∗) holds whenever f ∈ L1(ν) (or,
equivalently, whenever f ◦φ ∈ L1(µ)). �



(7) Let g : X → [0,∞) be measurable and ν : M → [0,∞] the measure E 7→
∫
E gdµ.

Let A = {g > 0} and let f ≥ 0 be a measurable function. Prove that∫
E

f

g
dν =

∫
E∩A

fdµ

for every E ∈M .

Solution. We know that
∫
X hdν =

∫
X hgdµ for all measurable h ≥ 0 by a theorem done

in class. Now 1
gg = χA, since ∞ · 0 = 0. Hence∫

E

f

g
dν ==

∫
X

f

g
χEdν =

∫
X
fχE

1

g
dν =

∫
X
fχE

1

g
gdµ =

∫
X
fχEχAdµ =

∫
E∩A

fdµ.

�

The Lebesgue-Radon-Nikodym decomposition. In the next three problems µ and ν
are finite measures on (X,M ) and σ = ν + µ. The aim of these problems is to prove the
essential part of the Radon-Nikodym theorem.

(8) Show that there exists g ∈ L1(σ), 0 ≤ g ≤ 1, such that

µ(E) =

∫
E
gdσ

for every E ∈M . Show that g is unique as an element of L1(µ).

Solution. The uniqueness of g follows from Problem 5. Indeed if g̃ is another measurable
function taking values in [0, 1] satisfying µ(E) =

∫
E g̃dσ for every E ∈M , then∫

E
(g − g̃)dσ = 0

for every E ∈ M , whence by Problem 5 σ({x | g(x) 6= g̃(x)}) = 0. Since µ ≤ σ, we then
get µ({x | g(x) 6= g̃(x)}) = 0. Thus g is unique when regarded as an element of L1(µ).

For a measurable complex function f , let ‖f‖p,ν , ‖f‖p,µ, and ‖f‖p,σ denote the p-norm

of f with respect to the measures ν, µ, and σ respectively (e.g., ‖f‖p,ν =
{∫

X |f |
pdν
}1/p

).

Using simple non-negative functions, it is easy to see, since ν and µ are less than or equal
to σ, that ‖f‖p,ν ≤ ‖f‖p,σ and ‖f‖p,µ ≤ ‖f‖p,σ, whence if f ∈ Lp(σ), then f ∈ Lp(µ). Thus
L2(σ) ⊂ L2(µ) ⊂ L1(µ), the last inclusion being true by Problem 4. We therefore have a
linear functional

Φ: L2(σ) −→ C
given by Φ(f) =

∫
X fdµ, f ∈ L2(σ). Now by Hölder (writing f = fg, with g = 1), we have

|Φ(f)| ≤ ‖f‖2,µ
√
µ(X) ≤ ‖f‖2,σ

√
µ(X)

whence ‖Φ‖ ≤
√
µ(X) <∞, i.e., Φ is bounded. By Problem 2 we have a unique g ∈ L2(σ)

such that

Φ(f) =

∫
X
fgdσ (f ∈ L2(σ)).

Let E ∈M . Taking f = χE , which is in L2(σ), for σ is finite, we get



µ(E) =

∫
E
gdσ (E ∈M ).

Since L2(σ) ⊂ L2(µ) ⊂ L1(µ) (as we observed above) we see that g ∈ L1(µ).
Finally, since σ is a finite measure, Theorem 1.40 of Rudin (see Tutorial 2 notes of

Naageswaran) applies. If E ∈M is such that σ(E) > 0 then

1

σ(E)

∫
E
gdσ =

µ(E)

σ(E)
∈ [0, 1].

It follows (from the quoted result) that B = {x | g(x) /∈ [0, 1]} has σ measure zero. One
can redefine g by setting g(x) = 0 for x in the σ-null set B to get 0 ≤ g(x) ≤ 1 for all
x ∈ X. �

(9) Let g be as in Problem (8). Let S = {g = 0}. Let νs be the measure on M given
by νs(E) = ν(E ∩ S). Show that νs ⊥ µ.

Solution. By definition of S, gχS = 0, and hence

µ(S) =

∫
S
gdσ =

∫
X
gχSdσ = 0.

On the other hand, if A = X r S, then νs(A) = ν(A ∩ S) = ν(∅) = 0. Thus νs ⊥ µ. �

(10) Let g be as in Problem (8). Let A = {g > 0} and let νa be the measure on M given
by νa(E) = ν(E ∩ A). Find a decreasing function φ : [0, 1] → [0,∞] such that the
following three properties hold:
(a) φ = p/q, where p and q are real polynomials,
(b) {φ = 0} = {1},
(c) for E ∈M the following holds:

νa(E) =

∫
E

(φ◦g)dµ.

Solution. Take φ to be the rational function

φ(x) =
1− x
x

.

It is clear that φ satisfies (a) and (b). As for property (c), let E ∈M . We have,∫
E

(φ◦g)dµ =

∫
E

1− g
g

dµ

=

∫
A∩E

(1− g)dσ (by Problem 7)

= σ(A ∩ E)−
∫
A∩E

gdσ

= σ(A ∩ E)− µ(A ∩ E)

= ν(A ∩ E)

= νa(E).

�
Remark: This means that νa � µ. Note that ν = νa + νs since A and S are disjoint and
their union is X. Thus we have a decomposition of ν into the sum of two measures, one
absolutely continuous with respect to µ and the other singular with respect to µ. It is very
easy to see that such a decomposition is unique.


