Graduate Analysis - I Midterm Exam Solutions
These are brief solutions. Your answers may require more details.

(1) Let v = {v,} € £>°. Show that the series > - ; &, is absolutely convergent for
every {&,} € €. Show that {&,} — > o | v,,&, defines a bounded linear functional
A, : /' — C such that ||V|s = ||A,]|, and that every A € (¢1)* is equal to A, for a
unique v € ¢*°. [Hint: Look at A(e;), i € N, where e; = {x;1(n)}, i € N]

Solution. For v = {v,,} € £*° and {&,} € ¢! we have,

D vnéal < IWlloo Y €al = I¥lloc sl < co.
n n

This shows that ), v,&, is absolutely convergent and also that ||A,| < ||v|ls. On the other
hand, if e; is the sequence given in the hint, then |le;[[1 = ), X3 (n) = 1, and A, (ei) = v,
whence, by definition of ||A,| we have:

vi| = ‘Au(ei) < [ Avllsolleslls = [[Avll - (i € N).
It follows that [[]e < Ayl Thus |v]le = || Au]. O

(2) Let H be a Hilbert space and A € H*. Show there exists a unique element yy € H
such that Az = (z,ya). Show also that [[ya|| = ||Al|. [You may use the fact that any
closed subspace of a Hilbert space gives a decomposition of the Hilbert space into
the direct sum of the closed subspace and its orthogonal complement. You don’t
have to prove the existence of such decompositions.|

Solution. If A = 0 there is nothing to prove. So assume A # 0. Let M = ker A. Let
N = M*. Then M and N are closed subspaces of H, H = M & N. Suppose z € N and
A(z) = 0. Then z € NN M = {0}. Hence A|y is injective. Since C is one dimensional,
this forces N to be either 0 or 1-dimensional. Since A # 0, therefore M # H, whence
N # 0. Thus A|y is an isomorphism from N to C. It follows there is a unique element
yo € N such that A(yp) = 1. Now if z € H, then x = m +n with m € M, n € N and this
decomposition is unique. Morover, since N is one-dimensional, n = ayyg for a unique a € C.
Thus A(z) = A(m) + aA(y) =0+ a = a. If
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then (z,ya) = (m,ya) + ayo,ya) = ellyol*/loll* = o = Az). Thus (z,ya) = A(z) for
every x € H. Uniqueness of yp follows from the fact that if z € H satisfies (x,z) = 0 for
every x € H then z = 0 (indeed, setting x = z, we see that ||z||*> = 0).

It remains to prove |[ya|l = ||A|. Note that ||ya|l = |lyo||~!. This yields,

1Al = [AGsn)|

= |lyo|
= |lyall®.

It follows that ||A|| > ya. By Cauchy-Schwarz, we have

A@)] = || < lellyall
By definition of ||A||, we then have ||A] < ||ya]l- O



(3) Let m be the Lebesgue measure on [0, 1] and {f,,} a sequence of bounded Lebesgue
measurable functions on [0, 1] satisfying

lim fnl2dm = 0.
n—oo [0’1] ’ ‘
Prove that
lim fn(x)dm(a:) =0.
=00 J10,1] VT

Solution. Let g: [0,1] — [0,00] be the function given by g(x) = z~/2 for z € (0,1] and
with ¢(0) = oo. Since f, € L*>(m) for all n € N, ||f,||s < oo for every natural number n.
By Holder’s inequality we therefore have

01 VT
(Note % + % = 1.) Now since Riemann and Lebesgue integrals coincide for continuous

functions on a compact interval and since ¢ is continuous on [1/k, 1] for every k € N, we
have

dm(x) < [[fallsllglls/2-

1

3 3 3
gll3/,, = lim g2dm = lim ¢~ idr = 4.
32 koo [1/k,1] k=00 J1/k
Thus

dm(z) < 45| falls = 0 (as n — o0).
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(4) Let p be finite (i.e. u(X) < oo). Show that for 1 < p < q, LY (u) C LP(u).

Solution. If ¢ = 0o and f € L(u) we have [ |f[Pdp < || f|[%n(X) < oo, since || f]loo < o0
and (X)) < co. Thus in this case f € LP(u). So assume ¢ < oo. Let f € LP(u) with p < q.
Let A = {|f| <1} and B = {|f| > 1}. Then |f[Pxa < xa and [f[PxB < |f|"xB < |f]*.
Thus

12 = / FIPxadi + / FPxsdn
X X

S/ XAdu+/ |f1dp
X X

= p(A) + (/117

< 00.



(5) Let f be a complex measurable function on X such that [, fdu = 0 for every
E € .#. Show that f =0 a.e. on X.

Solution. If x is a finite measure then one can use Theorem 1.40 from Rudin (done in
Tutorial 2). However, u need not be finite. By breaking up f into its real and imaginary
parts, it is enough to assume f is real. Let A = {f > 0}. Then A € .# and [, fTdu =
Jang fdr = 0 for every E € 4. Similarly [, f~du = 0 for every E € .#. Since f =
ft — f, it is enough the assume f > 0. Let E, = {f > 1/n} for n € N. Then

1
0=/ fdp > —pEq >0,
E, n

whence p(Ey) = 0 for every n € N. This means p({f > 0}) = 0 since {f > 0} = UJ,, En.
Since f > 0, this means f =0 a.e. [u]. O

(6) Let .# be a g-algebraon aset Y, and ¢: X — Y a measurable map, i.e., p~*(S) € .4
for every S e .Z. Let vi F — [0,00] be the measure given by v(S) = u(¢~1(S)),
for S € #. Show that f € L'(v) if and only if fo¢ € L'(u) and that in this case

| siv= [ (reon

holds. (You don’t have to show that v is a measure.)

Solution. For S € 7 we have x4-1(5) = xs°¢ and hence

/ xsdv =v(8) = pe~ () = / Xo—1(s)dp = / (xso@)du
Y X X

The asserted identity

(+) /Y fdv = /X (fob)dn

is therefore true for f a simple measurable non-negative non-negative function (whether f
is in L' () or not). By MCT, () holds for every measurable f such that f > 0. Since

[flog = [fol,
it follows from (x) for non-negative functions that f € L'(v) if and only if fop € L*(u). In
this case, since f© >0 and f~ > 0, we have

[ = [ (5o
/ fdv = / - o6)dp

Now fTop = (fodp)T and f~o¢ = (fop)~ and hence (x) holds whenever f € L'(v) (or,
equivalently, whenever fop € L'(u)). O

and



(7) Let g: X — [0,00) be measurable and v: .# — [0,00] the measure E — [, gdp.
Let A= {g > 0} and let f > 0 be a measurable function. Prove that

idu = fdu

EY ENA
for every E € . .

Solution. We know that | x hdv = J « hgdp for all measurable h > 0 by a theorem done
in class. Now %g = XA, since co - 0 = 0. Hence

1 1
idl/ ==/ fXEdV:/ fXEdV:/ fXEng:/ fxexadp = fdp.
EYJ x9 X g X g X ENnA
O

The Lebesgue-Radon-Nikodym decomposition. In the next three problems p and v
are finite measures on (X, .#) and 0 = v + pu. The aim of these problems is to prove the
essential part of the Radon-Nikodym theorem.

(8) Show that there exists g € L'(c0), 0 < g < 1, such that

u(E) = /E gdo

for every E € .#. Show that g is unique as an element of L' ().

Solution. The uniqueness of g follows from Problem 5. Indeed if § is another measurable
function taking values in [0, 1] satisfying u(E) = [ gdo for every E € .4, then

[ ta=apdr =0

for every E € .4, whence by Problemb o({z | g(z) # g(z)}) = 0. Since p < o, we then
get u({x | g(z) # g(x)}) = 0. Thus g is unique when regarded as an element of L*().

For a measurable complex function f, let ||f||,.., ||f||p,u, and || f]|p,» denote the p-norm

1/p
of f with respect to the measures v, i, and o respectively (e.g., || fllp, = {fX |f|de} ).

Using simple non-negative functions, it is easy to see, since v and p are less than or equal
to o, that || fllpr < | fllp.e and || fllp. < || fllp,o, whence if f € LP(o), then f € LP(p). Thus
L%*(0) C L*(p) C L(p), the last inclusion being true by Problem 4. We therefore have a
linear functional

®: L*(0) — C
given by ®(f) = [ fdu, f € L?(o). Now by Holder (writing f = fg, with g = 1), we have
[ QN < NSz v/ 1(X) < ([ fll20 v 1(X)

whence || @] < v/u(X) < 00, i.e., ® is bounded. By Problem 2 we have a unique g € L?(c)
such that

o) = [ fode (1€ 1%0).
Let E € .#. Taking f = xg, which is in L?(¢), for o is finite, we get



u(E):/Egda (E € .4).

Since L?(o) C L?(u) C L*(1) (as we observed above) we see that g € L!(p).
Finally, since o is a finite measure, Theorem 1.40 of Rudin (see Tutorial2 notes of
Naageswaran) applies. If E € . is such that o(E) > 0 then

0(1E) /Egdaz Zgg € [0,1].

It follows (from the quoted result) that B = {z | g(x) ¢ [0,1]} has o measure zero. One
can redefine g by setting g(z) = 0 for z in the o-null set B to get 0 < g(x) < 1 for all
zeX. g

(9) Let g be as in Problem (8). Let S = {g = 0}. Let v be the measure on .# given
by vs(E) =v(ENS). Show that vs L pu.

Solution. By definition of S, gxs = 0, and hence

/gda—/ gxsdo = 0.

On the other hand, if A = X \ S, then v5(4) =v(ANS)=v(0) =0. Thus vs L p. O

(10) Let g be as in Problem (8). Let A = {g > 0} and let v, be the measure on .# given
by v,(E) = v(EN A). Find a decreasing function ¢: [0,1] — [0, 00| such that the
following three properties hold:

(a) ¢ =p/q, where p and ¢ are real polynomials,

(b) {¢ =0} = {1},
(c) for E € A the following holds:

va(E) = /E(dwg)du

Solution. Take ¢ to be the rational function

¢(z) =
It is clear that ¢ satisfies (a) and (b). As for property (c), let E € .#. We have,

/E(qﬁog)duz/El;gdu

= / (1—g)do (by Problem 7)
ANE

1—=x

=0(ANE)— / gdo
ANE

=0(ANE)—u(ANE)

=v(ANE)

= vy(FE).

O

Remark: This means that v, < u. Note that v = v, 4+ v, since A and S are disjoint and
their union is X. Thus we have a decomposition of v into the sum of two measures, one

absolutely continuous with respect to p and the other singular with respect to p. It is very
easy to see that such a decomposition is unique.



