Graduate Analysis - I Midterm Exam Solutions

These are brief solutions. Your answers may require more details.
(1) Let $\nu=\left\{\nu_{n}\right\} \in \ell^{\infty}$. Show that the series $\sum_{n=1}^{\infty} \nu_{n} \xi_{n}$ is absolutely convergent for every $\left\{\xi_{n}\right\} \in \ell^{1}$. Show that $\left\{\xi_{n}\right\} \mapsto \sum_{n=1}^{\infty} \nu_{n} \xi_{n}$ defines a bounded linear functional $\Lambda_{\nu}: \ell^{1} \rightarrow \mathbb{C}$ such that $\|\nu\|_{\infty}=\left\|\Lambda_{\nu}\right\|$, and that every $\Lambda \in\left(\ell^{1}\right)^{*}$ is equal to Λ_{ν} for a unique $\nu \in \ell^{\infty}$. [Hint: Look at $\Lambda\left(e_{i}\right), i \in \mathbb{N}$, where $e_{i}=\left\{\chi_{\{i\}}(n)\right\}, i \in \mathbb{N}$.]
Solution. For $\nu=\left\{\nu_{n}\right\} \in \ell^{\infty}$ and $\left\{\xi_{n}\right\} \in \ell^{1}$ we have,

$$
\sum_{n}\left|\nu_{n} \xi_{n}\right| \leq\|\nu\|_{\infty} \sum_{n}\left|\xi_{n}\right|=\|\nu\|_{\infty}\|s\|_{1}<\infty .
$$

This shows that $\sum_{n} \nu_{n} \xi_{n}$ is absolutely convergent and also that $\left\|\Lambda_{\nu}\right\| \leq\|\nu\|_{\infty}$. On the other hand, if e_{i} is the sequence given in the hint, then $\left\|e_{i}\right\|_{1}=\sum_{n} \chi_{\{i\}}(n)=1$, and $\Lambda_{\nu}\left(e_{i}\right)=\nu_{i}$, whence, by definition of $\left\|\Lambda_{\nu}\right\|$ we have:

$$
\left|\nu_{i}\right|=\left|\Lambda_{\nu}\left(e_{i}\right)\right| \leq\left\|\Lambda_{\nu}\right\|_{\infty}\left\|e_{i}\right\|_{1}=\left\|\Lambda_{\nu}\right\| \quad(i \in \mathbb{N})
$$

It follows that $\|\nu\|_{\infty} \leq\left\|\Lambda_{\nu}\right\|$. Thus $\|\nu\|_{\infty}=\left\|\Lambda_{\nu}\right\|$.
(2) Let H be a Hilbert space and $\Lambda \in H^{*}$. Show there exists a unique element $y_{\Lambda} \in H$ such that $\Lambda x=\left\langle x, y_{\Lambda}\right\rangle$. Show also that $\left\|y_{\Lambda}\right\|=\|\Lambda\|$. [You may use the fact that any closed subspace of a Hilbert space gives a decomposition of the Hilbert space into the direct sum of the closed subspace and its orthogonal complement. You don't have to prove the existence of such decompositions.]

Solution. If $\Lambda=0$ there is nothing to prove. So assume $\Lambda \neq 0$. Let $M=\operatorname{ker} \Lambda$. Let $N=M^{\perp}$. Then M and N are closed subspaces of $H, H=M \oplus N$. Suppose $x \in N$ and $\Lambda(x)=0$. Then $x \in N \cap M=\{0\}$. Hence $\left.\Lambda\right|_{N}$ is injective. Since \mathbb{C} is one dimensional, this forces N to be either 0 or 1 -dimensional. Since $\Lambda \neq 0$, therefore $M \neq H$, whence $N \neq 0$. Thus $\left.\Lambda\right|_{N}$ is an isomorphism from N to \mathbb{C}. It follows there is a unique element $y_{0} \in N$ such that $\Lambda\left(y_{0}\right)=1$. Now if $x \in H$, then $x=m+n$ with $m \in M, n \in N$ and this decomposition is unique. Morover, since N is one-dimensional, $n=\alpha y_{0}$ for a unique $\alpha \in \mathbb{C}$. Thus $\Lambda(x)=\Lambda(m)+\alpha \Lambda\left(y_{0}\right)=0+\alpha=\alpha$. If

$$
y_{\Lambda}:=\frac{y_{0}}{\left\|y_{0}\right\|^{2}},
$$

then $\left\langle x, y_{\Lambda}\right\rangle=\left\langle m, y_{\Lambda}\right\rangle+\alpha\left\langle y_{0}, y_{\Lambda}\right\rangle=\alpha\left\|y_{0}\right\|^{2} /\left\|y_{0}\right\|^{2}=\alpha=\Lambda(x)$. Thus $\left\langle x, y_{\Lambda}\right\rangle=\Lambda(x)$ for every $x \in H$. Uniqueness of y_{Λ} follows from the fact that if $z \in H$ satisfies $\langle x, z\rangle=0$ for every $x \in H$ then $z=0$ (indeed, setting $x=z$, we see that $\|z\|^{2}=0$).

It remains to prove $\left\|y_{\Lambda}\right\|=\|\Lambda\|$. Note that $\left\|y_{\Lambda}\right\|=\left\|y_{0}\right\|^{-1}$. This yields,

$$
\begin{aligned}
\|\Lambda\|\left\|y_{\Lambda}\right\| & \geq\left|\Lambda\left(y_{\Lambda}\right)\right| \\
& =\left\|y_{0}\right\|^{-2} \\
& =\left\|y_{\Lambda}\right\|^{2} .
\end{aligned}
$$

It follows that $\|\Lambda\| \geq y_{\Lambda}$. By Cauchy-Schwarz, we have

$$
|\Lambda(x)|=\left|\left\langle x, y_{\Lambda}\right\rangle\right| \leq\|x\|\left\|y_{\Lambda}\right\| .
$$

By definition of $\|\Lambda\|$, we then have $\|\Lambda\| \leq\left\|y_{\Lambda}\right\|$.
(3) Let m be the Lebesgue measure on $[0,1]$ and $\left\{f_{n}\right\}$ a sequence of bounded Lebesgue measurable functions on $[0,1]$ satisfying

$$
\lim _{n \rightarrow \infty} \int_{[0,1]}\left|f_{n}\right|^{3} d m=0
$$

Prove that

$$
\lim _{n \rightarrow \infty} \int_{[0,1]} \frac{f_{n}(x)}{\sqrt{x}} d m(x)=0
$$

Solution. Let $g:[0,1] \rightarrow[0, \infty]$ be the function given by $g(x)=x^{-1 / 2}$ for $x \in(0,1]$ and with $g(0)=\infty$. Since $f_{n} \in L^{\infty}(m)$ for all $n \in \mathbb{N},\left\|f_{n}\right\|_{3}<\infty$ for every natural number n. By Hölder's inequality we therefore have

$$
\int_{[0,1]} \frac{f_{n}(x)}{\sqrt{x}} d m(x) \leq\left\|f_{n}\right\|_{3}\|g\|_{3 / 2} .
$$

(Note $\frac{1}{3}+\frac{2}{3}=1$.) Now since Riemann and Lebesgue integrals coincide for continuous functions on a compact interval and since g is continuous on $[1 / k, 1]$ for every $k \in \mathbb{N}$, we have

$$
\|g\|_{3 / 2}^{\frac{3}{2}}=\lim _{k \rightarrow \infty} \int_{[1 / k, 1]} g^{\frac{3}{2}} d m=\lim _{k \rightarrow \infty} \int_{1 / k}^{1} x^{-\frac{3}{4}} d x=4
$$

Thus

$$
\int_{[0,1]} \frac{f_{n}(x)}{\sqrt{x}} d m(x) \leq 4^{\frac{2}{3}}\left\|f_{n}\right\|_{3} \rightarrow 0 \quad(\text { as } n \rightarrow \infty) .
$$

(4) Let μ be finite (i.e. $\mu(X)<\infty)$. Show that for $1 \leq p \leq q, L^{q}(\mu) \subset L^{p}(\mu)$.

Solution. If $q=\infty$ and $f \in L^{q}(\mu)$ we have $\int_{X}|f|^{p} d \mu \leq\|f\|_{\infty}^{p} \mu(X)<\infty$, since $\|f\|_{\infty}<\infty$ and $\mu(X)<\infty$. Thus in this case $f \in L^{p}(\mu)$. So assume $q<\infty$. Let $f \in L^{p}(\mu)$ with $p \leq q$. Let $A=\{|f| \leq 1\}$ and $B=\{|f|>1\}$. Then $|f|^{p} \chi_{A} \leq \chi_{A}$ and $|f|^{p} \chi_{B} \leq|f|^{q} \chi_{B} \leq|f|^{q}$. Thus

$$
\begin{aligned}
\|f\|_{p}^{p} & =\int_{X}|f|^{p} \chi_{A} d \mu+\int_{X}|f|^{p} \chi_{B} d \mu \\
& \leq \int_{X} \chi_{A} d \mu+\int_{X}|f|^{q} d \mu \\
& =\mu(A)+\|f\|_{q}^{q} \\
& <\infty
\end{aligned}
$$

(5) Let f be a complex measurable function on X such that $\int_{E} f d \mu=0$ for every $E \in \mathscr{M}$. Show that $f=0$ a.e. on X.

Solution. If μ is a finite measure then one can use Theorem 1.40 from Rudin (done in Tutorial 2). However, μ need not be finite. By breaking up f into its real and imaginary parts, it is enough to assume f is real. Let $A=\{f \geq 0\}$. Then $A \in \mathscr{M}$ and $\int_{E} f^{+} d \mu=$ $\int_{A \cap E} f d \mu=0$ for every $E \in \mathscr{M}$. Similarly $\int_{E} f^{-} d \mu=0$ for every $E \in \mathscr{M}$. Since $f=$ $f^{+}-f^{-}$, it is enough the assume $f \geq 0$. Let $E_{n}=\{f \geq 1 / n\}$ for $n \in \mathbb{N}$. Then

$$
0=\int_{E_{n}} f d \mu \geq \frac{1}{n} \mu E_{n} \geq 0,
$$

whence $\mu\left(E_{n}\right)=0$ for every $n \in \mathbb{N}$. This means $\mu(\{f>0\})=0$ since $\{f>0\}=\bigcup_{n} E_{n}$. Since $f \geq 0$, this means $f=0$ a.e. $[\mu]$.
(6) Let \mathscr{F} be a σ-algebra on a set Y, and $\phi: X \rightarrow Y$ a measurable map, i.e., $\phi^{-1}(S) \in \mathscr{M}$ for every $S \in \mathscr{F}$. Let $\nu: \mathscr{F} \rightarrow[0, \infty]$ be the measure given by $\nu(S)=\mu\left(\phi^{-1}(S)\right)$, for $S \in \mathscr{F}$. Show that $f \in L^{1}(\nu)$ if and only if $f \circ \phi \in L^{1}(\mu)$ and that in this case

$$
\int_{Y} f d \nu=\int_{X}(f \circ \phi) d \mu
$$

holds. (You don't have to show that ν is a measure.)

Solution. For $S \in \mathscr{F}$ we have $\chi_{\phi^{-1}(S)}=\chi_{S} \circ \phi$ and hence

$$
\int_{Y} \chi_{S} d \nu=\nu(S)=\mu \phi^{-1}(S)=\int_{X} \chi_{\phi^{-1}(S)} d \mu=\int_{X}\left(\chi_{S} \circ \phi\right) d \mu .
$$

The asserted identity

$$
\begin{equation*}
\int_{Y} f d \nu=\int_{X}(f \circ \phi) d \mu \tag{*}
\end{equation*}
$$

is therefore true for f a simple measurable non-negative non-negative function (whether f is in $L^{1}(\nu)$ or not). By MCT, $(*)$ holds for every measurable f such that $f \geq 0$. Since

$$
|f| \circ \phi=|f \circ \phi|,
$$

it follows from (*) for non-negative functions that $f \in L^{1}(\nu)$ if and only if $f \circ \phi \in L^{1}(\mu)$. In this case, since $f^{+} \geq 0$ and $f^{-} \geq 0$, we have

$$
\int_{Y} f^{+} d \nu=\int_{X}\left(f^{+} \circ \phi\right) d \mu
$$

and

$$
\int_{Y} f^{-} d \nu=\int_{X}\left(f^{-} \circ \phi\right) d \mu
$$

Now $f^{+} \circ \phi=(f \circ \phi)^{+}$and $f^{-} \circ \phi=(f \circ \phi)^{-}$and hence $(*)$ holds whenever $f \in L^{1}(\nu)$ (or, equivalently, whenever $\left.f \circ \phi \in L^{1}(\mu)\right)$.
(7) Let $g: X \rightarrow[0, \infty)$ be measurable and $\nu: \mathscr{M} \rightarrow[0, \infty]$ the measure $E \mapsto \int_{E} g d \mu$. Let $A=\{g>0\}$ and let $f \geq 0$ be a measurable function. Prove that

$$
\int_{E} \frac{f}{g} d \nu=\int_{E \cap A} f d \mu
$$

for every $E \in \mathscr{M}$.

Solution. We know that $\int_{X} h d \nu=\int_{X} h g d \mu$ for all measurable $h \geq 0$ by a theorem done in class. Now $\frac{1}{g} g=\chi_{A}$, since $\infty \cdot 0=0$. Hence

$$
\int_{E} \frac{f}{g} d \nu==\int_{X} \frac{f}{g} \chi_{E} d \nu=\int_{X} f \chi_{E} \frac{1}{g} d \nu=\int_{X} f \chi_{E} \frac{1}{g} g d \mu=\int_{X} f \chi_{E} \chi_{A} d \mu=\int_{E \cap A} f d \mu
$$

The Lebesgue-Radon-Nikodym decomposition. In the next three problems μ and ν are finite measures on (X, \mathscr{M}) and $\sigma=\nu+\mu$. The aim of these problems is to prove the essential part of the Radon-Nikodym theorem.
(8) Show that there exists $g \in L^{1}(\sigma), 0 \leq g \leq 1$, such that

$$
\mu(E)=\int_{E} g d \sigma
$$

for every $E \in \mathscr{M}$. Show that g is unique as an element of $L^{1}(\mu)$.

Solution. The uniqueness of g follows from Problem 5. Indeed if \tilde{g} is another measurable function taking values in $[0,1]$ satisfying $\mu(E)=\int_{E} \tilde{g} d \sigma$ for every $E \in \mathscr{M}$, then

$$
\int_{E}(g-\tilde{g}) d \sigma=0
$$

for every $E \in \mathscr{M}$, whence by Problem $5 \sigma(\{x \mid g(x) \neq \tilde{g}(x)\})=0$. Since $\mu \leq \sigma$, we then get $\mu(\{x \mid g(x) \neq \tilde{g}(x)\})=0$. Thus g is unique when regarded as an element of $L^{1}(\mu)$.

For a measurable complex function f, let $\|f\|_{p, \nu},\|f\|_{p, \mu}$, and $\|f\|_{p, \sigma}$ denote the p-norm of f with respect to the measures ν, μ, and σ respectively (e.g., $\|f\|_{p, \nu}=\left\{\int_{X}|f|^{p} d \nu\right\}^{1 / p}$). Using simple non-negative functions, it is easy to see, since ν and μ are less than or equal to σ, that $\|f\|_{p, \nu} \leq\|f\|_{p, \sigma}$ and $\|f\|_{p, \mu} \leq\|f\|_{p, \sigma}$, whence if $f \in L^{p}(\sigma)$, then $f \in L^{p}(\mu)$. Thus $L^{2}(\sigma) \subset L^{2}(\mu) \subset L^{1}(\mu)$, the last inclusion being true by Problem 4. We therefore have a linear functional

$$
\Phi: L^{2}(\sigma) \longrightarrow \mathbb{C}
$$

given by $\Phi(f)=\int_{X} f d \mu, f \in L^{2}(\sigma)$. Now by Hölder (writing $f=f g$, with $g=1$), we have

$$
|\Phi(f)| \leq\|f\|_{2, \mu} \sqrt{\mu(X)} \leq\|f\|_{2, \sigma} \sqrt{\mu(X)}
$$

whence $\|\Phi\| \leq \sqrt{\mu(X)}<\infty$, i.e., Φ is bounded. By Problem 2 we have a unique $g \in L^{2}(\sigma)$ such that

$$
\Phi(f)=\int_{X} f g d \sigma \quad\left(f \in L^{2}(\sigma)\right) .
$$

Let $E \in \mathscr{M}$. Taking $f=\chi_{E}$, which is in $L^{2}(\sigma)$, for σ is finite, we get

$$
\mu(E)=\int_{E} g d \sigma \quad(E \in \mathscr{M})
$$

Since $L^{2}(\sigma) \subset L^{2}(\mu) \subset L^{1}(\mu)$ (as we observed above) we see that $g \in L^{1}(\mu)$.
Finally, since σ is a finite measure, Theorem 1.40 of Rudin (see Tutorial 2 notes of Naageswaran) applies. If $E \in \mathscr{M}$ is such that $\sigma(E)>0$ then

$$
\frac{1}{\sigma(E)} \int_{E} g d \sigma=\frac{\mu(E)}{\sigma(E)} \in[0,1]
$$

It follows (from the quoted result) that $B=\{x \mid g(x) \notin[0,1]\}$ has σ measure zero. One can redefine g by setting $g(x)=0$ for x in the σ-null set B to get $0 \leq g(x) \leq 1$ for all $x \in X$.
(9) Let g be as in Problem (8). Let $S=\{g=0\}$. Let ν_{s} be the measure on \mathscr{M} given by $\nu_{s}(E)=\nu(E \cap S)$. Show that $\nu_{s} \perp \mu$.

Solution. By definition of $S, g \chi_{S}=0$, and hence

$$
\mu(S)=\int_{S} g d \sigma=\int_{X} g \chi_{S} d \sigma=0
$$

On the other hand, if $A=X \backslash S$, then $\nu_{s}(A)=\nu(A \cap S)=\nu(\emptyset)=0$. Thus $\nu_{s} \perp \mu$.
(10) Let g be as in Problem (8). Let $A=\{g>0\}$ and let ν_{a} be the measure on \mathscr{M} given by $\nu_{a}(E)=\nu(E \cap A)$. Find a decreasing function $\phi:[0,1] \rightarrow[0, \infty]$ such that the following three properties hold:
(a) $\phi=p / q$, where p and q are real polynomials,
(b) $\{\phi=0\}=\{1\}$,
(c) for $E \in \mathscr{M}$ the following holds:

$$
\nu_{a}(E)=\int_{E}(\phi \circ g) d \mu
$$

Solution. Take ϕ to be the rational function

$$
\phi(x)=\frac{1-x}{x}
$$

It is clear that ϕ satisfies (a) and (b). As for property (c), let $E \in \mathscr{M}$. We have,

$$
\begin{aligned}
\int_{E}(\phi \circ g) d \mu & =\int_{E} \frac{1-g}{g} d \mu \\
& =\int_{A \cap E}(1-g) d \sigma \quad(\text { by Problem } 7) \\
& =\sigma(A \cap E)-\int_{A \cap E} g d \sigma \\
& =\sigma(A \cap E)-\mu(A \cap E) \\
& =\nu(A \cap E) \\
& =\nu_{a}(E)
\end{aligned}
$$

Remark: This means that $\nu_{a} \ll \mu$. Note that $\nu=\nu_{a}+\nu_{s}$ since A and S are disjoint and their union is X. Thus we have a decomposition of ν into the sum of two measures, one absolutely continuous with respect to μ and the other singular with respect to μ. It is very easy to see that such a decomposition is unique.

