Graduate Analysis -I
 Semester 1, 2018-19
 Midterm Exam

September 27, 2018

Throughout (X, \mathscr{M}, μ) will denote a measure space. By a measurable function f (unless otherwise stated) we mean a measurable function on (X, \mathscr{M}). Similarly a measurable set (unless otherwise stated) means a member of \mathscr{M}.

For any set $Z, \mathscr{P}(Z)$ denotes the power set of Z.
If S is a measurable subset of \mathbb{R}^{n}, the Lebesgue measure on S is the restriction of the Lebesgue measure on \mathbb{R}^{n} to the σ-algebra of Lebesgue measurable sets in \mathbb{R}^{n} contained in S.

For $1 \leq p \leq \infty$, the symbol ℓ^{p} will denote the Banach space $L^{p}(\#)$ where $\#$ is the counting measure on $(\mathbb{N}, \mathscr{P}(\mathbb{N}))$, and as always the norm on ℓ^{p} is denoted $\|\cdot\|_{p}$. Note that for $1 \leq p<\infty, \ell^{p}$ is the set of sequences $s=\left\{\xi_{n}\right\}$ of complex numbers such that $\sum_{1}^{\infty}\left|\xi_{n}\right|^{p}<\infty$ and that for such an $s,\|s\|_{p}=\left\{\sum_{n=1}^{\infty}\left|\xi_{n}\right|^{p}\right\}^{\frac{1}{p}}$. The space ℓ^{∞} is clearly the space of bounded sequences $s=\left\{\xi_{n}\right\}$ of complex numbers and $\|s\|_{\infty}=\sup _{n}\left|\xi_{n}\right|$.

For X and Y normed linear spaces, $B(X, Y)$ will denote the space of bounded linear maps from X to Y. All our normed linear spaces this exam are over \mathbb{C}. The space $B(X, \mathbb{C})$, i.e., the space of bounded linear functionals on X, will be denoted X^{*}. Here \mathbb{C} is regarded as a Banach space in the obvious way. Recall that $B(X, Y)$ is naturally a normed linear space, and it is a Banach space if Y is Banach.

If $h: X \rightarrow[0, \infty)$ is a measurable function, then $\frac{1}{h}: X \rightarrow[0, \infty]$ is the map on X which is the usual reciprocal map on $\{h>0\}$ and takes value ∞ on $\{h=0\}$. Note that h is measurable. If $f: X \rightarrow[0, \infty]$ is another measurable map, then $\frac{f}{h}$ is defined to be $f \frac{1}{h}$, with the usual conventions for the multiplication of various combinations of $\infty, 0$, and finite real numbers.

Each question is worth 10 marks.
(1) Let $\nu=\left\{\nu_{n}\right\} \in \ell^{\infty}$. Show that the series $\sum_{n=1}^{\infty} \nu_{n} \xi_{n}$ is absolutely convergent for every $\left\{\xi_{n}\right\} \in \ell^{1}$. Show that $\left\{\xi_{n}\right\} \mapsto \sum_{n=1}^{\infty} \nu_{n} \xi_{n}$ defines a bounded linear functional $\Lambda_{\nu}: \ell^{1} \rightarrow \mathbb{C}$ such that $\|\nu\|_{\infty}=\left\|\Lambda_{\nu}\right\|$, and that every $\Lambda \in\left(\ell^{1}\right)^{*}$ is equal to Λ_{ν} for a unique $\nu \in \ell^{\infty}$. [Hint: Look at $\Lambda\left(e_{i}\right), i \in \mathbb{N}$, where $e_{i}=\left\{\chi_{\{i\}}(n)\right\}, i \in \mathbb{N}$.]
(2) Let H be a Hilbert space and $\Lambda \in H^{*}$. Show there exists a unique element $y_{\Lambda} \in H$ such that $\Lambda x=\left\langle x, y_{\Lambda}\right\rangle$. Show also that $\left\|y_{\Lambda}\right\|=\|\Lambda\|$. [You may use the fact that any closed subspace of a Hilbert space gives a decomposition of the Hilbert space into the direct sum of the closed subspace and its orthogonal complement. You don't have to prove the existence of such decompositions.]
(3) Let m be the Lebesgue measure on $[0,1]$ and $\left\{f_{n}\right\}$ a sequence of bounded Lebesgue measurable functions on $[0,1]$ satisfying

$$
\lim _{n \rightarrow \infty} \int_{[0,1]}\left|f_{n}\right|^{3} d m=0
$$

Prove that

$$
\lim _{n \rightarrow \infty} \int_{[0,1]} \frac{f_{n}(x)}{\sqrt{x}} d m(x)=0
$$

(4) Let μ be finite (i.e. $\mu(X)<\infty$). Show that for $1 \leq p \leq q, L^{q}(\mu) \subset L^{p}(\mu)$.
(5) Let f be a complex measurable function on X such that $\int_{E} f d \mu=0$ for every $E \in \mathscr{M}$. Show that $f=0$ a.e. on X.
(6) Let \mathscr{F} be a σ-algebra on a set Y, and $\phi: X \rightarrow Y$ a measurable map, i.e., $\phi^{-1}(S) \in \mathscr{M}$ for every $S \in \mathscr{F}$. Let $\nu: \mathscr{F} \rightarrow[0, \infty]$ be the measure given by $\nu(S)=\mu\left(\phi^{-1}(S)\right)$, for $S \in \mathscr{F}$. Show that $f \in L^{1}(\nu)$ if and only if $f \circ \phi \in L^{1}(\mu)$ and that in this case

$$
\int_{Y} f d \nu=\int_{X}(f \circ \phi) d \mu
$$

holds. (You don't have to show that ν is a measure.)
(7) Let $g: X \rightarrow[0, \infty)$ be measurable and $\nu: \mathscr{M} \rightarrow[0, \infty]$ the measure $E \mapsto \int_{E} g d \mu$. Let $A=\{g>0\}$ and let $f \geq 0$ be a measurable function. Prove that

$$
\int_{E} \frac{f}{g} d \nu=\int_{E \cap A} f d \mu
$$

for every $E \in \mathscr{M}$.
The Lebesgue-Radon-Nikodym decomposition. In the next three problems μ and ν are finite measures on (X, \mathscr{M}) and $\sigma=\nu+\mu$. The aim of these problems is to prove the essential part of the Radon-Nikodym theorem.
(8) Show that there exists $g \in L^{1}(\sigma), 0 \leq g \leq 1$, such that

$$
\mu(E)=\int_{E} g d \sigma
$$

for every $E \in \mathscr{M}$. Show that g is unique as an element of $L^{1}(\mu)$.
(9) Let g be as in Problem (8). Let $S=\{g=0\}$. Let ν_{s} be the measure on \mathscr{M} given by $\nu_{s}(E)=\nu(E \cap S)$. Show that $\nu_{s} \perp \mu$.
(10) Let g be as in Problem (8). Let $A=\{g>0\}$ and let ν_{a} be the measure on \mathscr{M} given by $\nu_{a}(E)=\nu(E \cap A)$. Find a decreasing function $\phi:[0,1] \rightarrow[0, \infty]$ such that the following three properties hold:
(a) $\phi=p / q$, where p and q are real polynomials,
(b) $\{\phi=0\}=\{1\}$,
(c) for $E \in \mathscr{M}$ the following holds:

$$
\nu_{a}(E)=\int_{E}(\phi \circ g) d \mu .
$$

Remark: This means that $\nu_{a} \ll \mu$. Note that $\nu=\nu_{a}+\nu_{s}$ since A and S are disjoint and their union is X. Thus we have a decomposition of ν into the sum of two measures, one absolutely continuous with respect to μ and the other singular with respect to μ. It is very easy to see that such a decomposition is unique.

