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Throughout (X,M , µ) will denote a measure space. By a measurable function f (unless
otherwise stated) we mean a measurable function on (X,M ). Similarly a measurable set
(unless otherwise stated) means a member of M .

For any set Z, P(Z) denotes the power set of Z.
If S is a measurable subset of Rn, the Lebesgue measure on S is the restriction of the

Lebesgue measure on Rn to the σ-algebra of Lebesgue measurable sets in Rn contained in
S.

For 1 ≤ p ≤ ∞, the symbol `p will denote the Banach space Lp(#) where # is the
counting measure on (N,P(N)), and as always the norm on `p is denoted ‖ · ‖p. Note
that for 1 ≤ p < ∞, `p is the set of sequences s = {ξn} of complex numbers such that∑∞

1 |ξn|p < ∞ and that for such an s, ‖s‖p = {
∑∞

n=1 |ξn|p}
1
p . The space `∞ is clearly the

space of bounded sequences s = {ξn} of complex numbers and ‖s‖∞ = supn |ξn|.
For X and Y normed linear spaces, B(X,Y ) will denote the space of bounded linear

maps from X to Y . All our normed linear spaces this exam are over C. The space B(X,C),
i.e., the space of bounded linear functionals on X, will be denoted X∗. Here C is regarded
as a Banach space in the obvious way. Recall that B(X,Y ) is naturally a normed linear
space, and it is a Banach space if Y is Banach.

If h : X → [0,∞) is a measurable function, then 1
h : X → [0,∞] is the map on X which

is the usual reciprocal map on {h > 0} and takes value ∞ on {h = 0}. Note that h is

measurable. If f : X → [0,∞] is another measurable map, then f
h is defined to be f 1

h , with
the usual conventions for the multiplication of various combinations of ∞, 0, and finite real
numbers.

Each question is worth 10 marks.

(1) Let ν = {νn} ∈ `∞. Show that the series
∑∞

n=1 νnξn is absolutely convergent for
every {ξn} ∈ `1. Show that {ξn} 7→

∑∞
n=1 νnξn defines a bounded linear functional

Λν : `1 → C such that ‖ν‖∞ = ‖Λν‖, and that every Λ ∈ (`1)∗ is equal to Λν for a
unique ν ∈ `∞. [Hint: Look at Λ(ei), i ∈ N, where ei = {χ{i}(n)}, i ∈ N.]

(2) Let H be a Hilbert space and Λ ∈ H∗. Show there exists a unique element yΛ ∈ H
such that Λx = 〈x, yΛ〉. Show also that ‖yΛ‖ = ‖Λ‖. [You may use the fact that any
closed subspace of a Hilbert space gives a decomposition of the Hilbert space into
the direct sum of the closed subspace and its orthogonal complement. You don’t
have to prove the existence of such decompositions.]

(3) Let m be the Lebesgue measure on [0, 1] and {fn} a sequence of bounded Lebesgue
measurable functions on [0, 1] satisfying

lim
n→∞

∫
[0,1]
|fn|3dm = 0.

Prove that

lim
n→∞

∫
[0,1]

fn(x)√
x
dm(x) = 0.



(4) Let µ be finite (i.e.µ(X) <∞). Show that for 1 ≤ p ≤ q, Lq(µ) ⊂ Lp(µ).

(5) Let f be a complex measurable function on X such that
∫
E fdµ = 0 for every

E ∈M . Show that f = 0 a.e. on X.

(6) Let F be a σ-algebra on a set Y , and φ : X → Y a measurable map, i.e., φ−1(S) ∈M
for every S ∈ F . Let ν : F → [0,∞] be the measure given by ν(S) = µ(φ−1(S)),
for S ∈ F . Show that f ∈ L1(ν) if and only if f ◦φ ∈ L1(µ) and that in this case∫

Y
fdν =

∫
X

(f ◦φ)dµ

holds. (You don’t have to show that ν is a measure.)

(7) Let g : X → [0,∞) be measurable and ν : M → [0,∞] the measure E 7→
∫
E gdµ.

Let A = {g > 0} and let f ≥ 0 be a measurable function. Prove that∫
E

f

g
dν =

∫
E∩A

fdµ

for every E ∈M .

The Lebesgue-Radon-Nikodym decomposition. In the next three problems µ and ν
are finite measures on (X,M ) and σ = ν + µ. The aim of these problems is to prove the
essential part of the Radon-Nikodym theorem.

(8) Show that there exists g ∈ L1(σ), 0 ≤ g ≤ 1, such that

µ(E) =

∫
E
gdσ

for every E ∈M . Show that g is unique as an element of L1(µ).

(9) Let g be as in Problem (8). Let S = {g = 0}. Let νs be the measure on M given
by νs(E) = ν(E ∩ S). Show that νs ⊥ µ.

(10) Let g be as in Problem (8). Let A = {g > 0} and let νa be the measure on M given
by νa(E) = ν(E ∩ A). Find a decreasing function φ : [0, 1] → [0,∞] such that the
following three properties hold:
(a) φ = p/q, where p and q are real polynomials,
(b) {φ = 0} = {1},
(c) for E ∈M the following holds:

νa(E) =

∫
E

(φ◦g)dµ.

Remark: This means that νa � µ. Note that ν = νa + νs since A and S are disjoint and
their union is X. Thus we have a decomposition of ν into the sum of two measures, one
absolutely continuous with respect to µ and the other singular with respect to µ. It is very
easy to see that such a decomposition is unique.


