
Graduate Analysis - I
Semester 1, 2018-19

Final Exam

(1) (a) (3 marks) Let H be a non-zero Hilbert space and call an orthonormal set
{uα | α ∈ A} in H a complete orthonormal set if it is a maximal orthonormal
set. Give two other equivalent conditions for {uα}α∈A to be complete.

(b) (3 marks) State Tonelli’s theorem for complete measure spaces.
(c) (4 marks) Let X be a locally compact Hausdorff Space. Define C0(X) as a

normed linear space. State the Riesz Representation Theorem for bounded
functionals on C0(X).

Solution: These are in the notes for the course.

(2) For 1 ≤ p ≤ ∞ let Lp = Lp([0, 1],m) where m is the Lebesgue measure and let
J : L1 ↪→ (L∞)∗ be the canonical embedding of a normed linear space into its double
dual. Let λ : C[0, 1]→ C be the map f 7→ f(1/2).

(a) (3 marks) Prove there exists Λ ∈ (L∞)∗, with ‖Λ‖ = 1, such that Λ|C[0,1] = λ.

Solution: Since |λ(f)| = |f(1/2)| ≤ ‖f‖∞ for f ∈ C[0, 1], therefore ‖λ‖ ≤ 1.
Taking f = 1, we see that ‖λ‖ = 1. The required Λ ∈ (L∞)∗ is now obtained
by applying the Hahn-Banach theorem.

(b) (7 marks) Show that if Λ is as in (a), then Λ /∈ J(L1).

Solution: For h ∈ L∞, let Φh be symbol we use when we regard h as an element
of (L1)∗ under the natural identification of L∞ with (L1)∗. This means that

for g ∈ L1, Φh(g) =
∫ 1

0 hg dm.

Suppose Λ ∈ J(L1), say Λ = J(gΛ). Then gΛ ∈ L1 and for h ∈ L∞, Λ(h) =

Φh(gΛ) =
∫ 1

0 hgΛ dm. In particular we have

λ(f) =

∫ 1

0
fgΛ dm, (f ∈ C[0, 1]).

On the other hand

λ(f) = f(1/2) =

∫ 1

0
f dδ1/2, (f ∈ C[0, 1]),

where δ1/2 is the Dirac measure at 1/2. The measure represented by gΛ dm as
well as the measure δ1/2 are regular measures, and hence by the Riesz Repre-
sentation Theorem, they are equal since both represent λ. This means δ1/2 is
absolutely continuous with respect to m, which is a contradiction.
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(3) Let X be compact Hausdorff. Show that if C(X) is reflexive then X is finite. (The
converse is obvious. Please do not waste your time proving it.)

Solution: Choose x0 ∈ X. Identify C(X)∗ with regular complex measures on X
via the Riesz Representation Theorem. Define Λ: C(X)∗ → C by the formula

Λ(µ) = µ({x0})
for µ a regular complex measure on X. Since |µ({x0})| ≤ |µ|(X) = ‖µ‖, therefore
Λ is bounded. Now C(X) is reflexive and hence there exists a continuous function
f on X such that

Λ(µ) =

∫
X
f dµ (µ ∈ C(X)∗).

For x ∈ X, we have

χ{x0}(x) = δx({x0}) = Λ(δx) =

∫
X
f dδx = f(x).

Thus χ{x0} = f and hence χ{x0} is continuous. Now

X r {x0} = χ−1
{x0}(0)

and hence X r {x0} is a closed set. Thus {x0} is open, i.e. X is discrete. Since X
is compact, this forces X to be finite.

(4) Use the Riesz Representation Theorem for C0(X)∗, for X a locally compact Haus-
dorff space, to show that there is an isomorphism from `1 onto c∗0 which preserves
norms, and give the isomorphism. Here c0 is the space of complex sequences {sn}
with supremum norm such that limn→∞ sn = 0.

Solution: We can identify c0 with C0(N), where N is given the discrete topology.
By the Riesz Representation Theorem c∗0 can be identified isometrically with the
space of complex measures on N (complex measures on N are obviously regular).
The norm of a complex measure µ is its total variation |µ|(N). Thus, given Λ ∈ c∗0,
there exists a unique complex measure µΛ on N such that Λ(s) =

∫
N s dµΛ for s ∈ c0,

and in this case ‖Λ‖ = |µΛ|(N). Conversely, given a complex measure µ on N, there
is a unique Λ ∈ c∗0 such that µ = µΛ.

Given f = {fn} ∈ `1, we have the complex measure µ = µf defined by dµ = f d#,
where # is the counting measure on N. Moreover, from a theorem done in class,

(∗) ‖µf‖ = |µf |(N) =

∫
N
|f | d# =

∞∑
n=1

|fn| = ‖f‖1.

From our earlier discussion, it follows that if

Λf : c0 −→ C
is the functional

Λf (s) =

∫
N
s dµf =

∫
N
sf d# =

∑
n

snfn (s = {sn} ∈ c0),

then
‖Λf‖ = ‖f‖1.
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Now every complex measure µ on N is necessarily absolutely continuous with
respect to the counting measure #, for the only subset of N with zero # measure is
the empty set. Thus if µ is a complex measure on N it must be of the form dµ = f d#
for a unique f ∈ L1(#) = `1. In other words µ = µf for a unique f ∈ `1 and in this
case ‖µ‖ = ‖f‖1.

It follows that f 7→ Λf gives us an isometric isomorphism from `1 to c∗0.

(5) Show that
∑∞

n=1
1
n2 = π2

6 .

Solution: Let f(x) = x on [π, π]. Then f ∈ L2(T ). Work out ‖f‖22 = 1/(2π)
∫ π
−π x

2dx

and the Fourier coefficents f̂(n), n ∈ Z, and then use the Parseval identity

‖f‖22 =
∑
n∈Z
|f̂(n)|2

to get the answer. Details are left to you.

(6) For n ∈ N, let Bn, Ln and mn be the Borel σ-algebra, the Lebesgue σ-algebra,
and the Lebesgue measure respectively on Rn. Let r + s = k, r, s ∈ N. Assume
Br×Bs = Bk, that Bk = Br×Bs ⊂ Lr×Ls and that mr×ms = mk on Lr×Ls.
Show that Lr ×Ls ⊂ Lk and that Lr ×Ls 6= Lk

Solution: This was done in class using monotone classes.

Fourier Integrals. In the remaining problems L will be the Lebesgue σ-algebra on R and
m will denote the measure on L given by

m =
1√
2π

(Lebesgue measure).

For 1 ≤ p ≤ ∞, Lp will denote Lp(m), and ‖ · ‖p will denote the norm on Lp. For f ∈ L1,

f̂ denotes the Fourier transform of f .

In what follows, you may use the following easily established fact (please do work it out in
your spare time after the exam). For n ∈ N, let hn = χ

[−n,n]
∗χ

[−1,1]
. Then hn is continuous

and piecewise linear, which is zero in (−∞,−n − 1] ∪ [n + 1,∞), is the constant
√

2/π in
[−n + 1, n − 1], and is obvious linear interpolation of these in the [−n − 1,−n + 1] and

[n− 1, n+ 1]. In other words, ‖hn‖∞ =
√

2/π for all n ∈ N.
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For the record:

hn(t) =



0, |t| ≥ n+ 1

n+ 1 + t√
2π

, −n− 1 < t < −n+ 1

√
2

π
, 1− n ≤ t ≤ n− 1

n+ 1− t√
2π

, n− 1 < t < n+ 1

Here is the graph of (
√

2π)h4:

You don’t have to prove any of the above. This is more to get you comfortable with hn
and use it to prove what is asked in the following pages. You will only need to know that
hn ∈ C0(R), that hn = χ

[−n,n]
∗ χ

[−1,1]
, and that ‖hn‖∞ =

√
2/π.

(7) Prove that ∫ ∞
−∞

sin2(nx)

x2
dx = nπ

by showing that χ̂
[−n,n]

(t) =
√

2
π

sin(nt)
t and then using Fourier theory. (Other meth-

ods will not fetch you marks.)

Solution: Note that χ[−n,n] ∈ L1 ∩ L2. Hence χ̂[−n,n] exists and is in L2 and

(∗) ‖χ[−n,n]‖22 = ‖χ̂[−n,n]‖22.
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We have

√
2πχ̂[−n,n](t) =

∫ n

−n
e−itx dx =

[
e−itx

−it

]n
x=−n

=
eitn − e−itn

it

=
2 sin (nt)

t
It follows that

χ̂[−n,n](t) =

√
2

π

sin (nt)

t
.

The above together with (∗) then implies

‖χ[−n,n]‖22 =
1√
2π

2

π

∫ ∞
−∞

sin2 (nx)

x2
dx

=
1

π

√
2

π

∫ ∞
−∞

sin2 (nx)

x2
dx

On the other hand

‖χ[−n,n]‖22 =
1√
2π

∫ ∞
−∞

χ2
[−n,n](x) dx

=

√
2

π
n.

Thus
1

π

√
2

π

∫ ∞
−∞

sin2 (nx)

x2
dx =

√
2

π
n.

It follows that ∫ ∞
−∞

sin2(nx)

x2
dx = nπ

as required.

(8) (a) (3 marks) Let fn(x) = 2
π

sin(nx) sin(x)
x2

. Show that f̂n = hn where hn has been
defined two pages earlier.

Solution: Since hn = χ
[−n,n]

∗ χ
[−1,1]

we have

ĥn(t) = χ̂
[−n,n]

(t) · χ̂
[−1,1]

(t)

=
2

π

sin(nt) sin(t)

t2

= fn(t)

Since χ̂
[−n,n]

and χ̂
[−1,1]

are in L2, their product, namely ĥn = fn, is in L1.

Since ĥn ∈ L1, Fourier inversion applies and we have:
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hn(x) =
1√
2π

∫ ∞
−∞

fn(t)eitx dt = ĝn(x)

where gn(t) = fn(−t). Now fn(t) = 2
π

sin(nt) sin(t)
t2

= fn(−t) = gn(t). This proves

that f̂n = hn.

(b) (7 marks) Show that the Fourier transform Φ: L1 → C0(R), Φ(f) = f̂ , is
not an onto map by showing that if fn is as in part (a), then ‖fn‖1 → ∞ as
n → ∞. Why would this prove that Φ is not onto? (To show ‖fn‖1 → ∞
as n → ∞, you may use the fact that sin(x) ≥ x/2 in [0, 1] and the fact that∫∞

0 (| sin(x)|/x)dx =∞. You don’t have to prove these well known results.)

Solution: Let us first prove that ‖fn‖1 →∞ as n→∞. We have

‖fn‖1 =
1

π

√
2

π

∫ ∞
−∞

∣∣∣sin(nx) sin(x)

x2

∣∣∣ dx
≥ 1

π

√
2

π

∫ 1

0

∣∣∣sin(nx) sin(x)

x2

∣∣∣ dx
≥ 1

π

√
2

π

∫ 1

0

| sin(nx)|
x2

x

2
dx (since sinx ≥ x/2 on [0, 1])

=
1

π

1√
2π

∫ 1

0

| sin(nx)|
x

dx

=
1

π

1√
2π

∫ n

0

| sin(x)|
x

dx.

The last quantity −→∞ as n −→∞.
We have seen in class (via the Fourier Inversion theorem) that if the Fourier

transform f̂ of a function f is zero, then f = 0 in L1. Therefore Φ is one-to-one.
The norm of C0(R) is the supremum norm ‖ · ‖∞. Moreover,

|f̂(t)| ≤ 1/(2π)

∫ ∞
−∞
|f(x)eitx| dx = ‖f‖1

for t ∈ R, i.e.,

‖f̂‖∞ ≤ ‖f‖1.
Thus Φ is a continuous linear operator. According to the Open Mapping Theorem, if

Φ is onto there exists δ > 0 such that ‖f̂‖∞ ≥ δ‖f‖1 for every f ∈ L1. In particular

‖hn‖∞ ≥ δ‖fn‖1

for every n ∈ N. This means
√

2
π ≥ δ‖fn‖1 for every n ∈ N, contradicting the fact

that ‖fn‖1 →∞ as n→∞.


