Graduate Analysis - I
 Semester 1, 2018-19
 Final Exam

(1) (a) (3 marks) Let H be a non-zero Hilbert space and call an orthonormal set $\left\{u_{\alpha} \mid \alpha \in A\right\}$ in H a complete orthonormal set if it is a maximal orthonormal set. Give two other equivalent conditions for $\left\{u_{\alpha}\right\}_{\alpha \in A}$ to be complete.
(b) (3 marks) State Tonelli's theorem for complete measure spaces.
(c) (4 marks) Let X be a locally compact Hausdorff Space. Define $C_{0}(X)$ as a normed linear space. State the Riesz Representation Theorem for bounded functionals on $C_{0}(X)$.
Solution: These are in the notes for the course.
(2) For $1 \leq p \leq \infty$ let $L^{p}=L^{p}([0,1], m)$ where m is the Lebesgue measure and let $J: L^{1} \hookrightarrow\left(L^{\infty}\right)^{*}$ be the canonical embedding of a normed linear space into its double dual. Let $\lambda: C[0,1] \rightarrow \mathbb{C}$ be the map $f \mapsto f(1 / 2)$.
(a) (3 marks) Prove there exists $\Lambda \in\left(L^{\infty}\right)^{*}$, with $\|\Lambda\|=1$, such that $\left.\Lambda\right|_{C[0,1]}=\lambda$.

Solution: Since $|\lambda(f)|=|f(1 / 2)| \leq\|f\|_{\infty}$ for $f \in C[0,1]$, therefore $\|\lambda\| \leq 1$. Taking $f=1$, we see that $\|\lambda\|=1$. The required $\Lambda \in\left(L^{\infty}\right)^{*}$ is now obtained by applying the Hahn-Banach theorem.
(b) (7 marks) Show that if Λ is as in (a), then $\Lambda \notin J\left(L^{1}\right)$.

Solution: For $h \in L^{\infty}$, let Φ_{h} be symbol we use when we regard h as an element of $\left(L^{1}\right)^{*}$ under the natural identification of L^{∞} with $\left(L^{1}\right)^{*}$. This means that for $g \in L^{1}, \Phi_{h}(g)=\int_{0}^{1} h g d m$.
Suppose $\Lambda \in J\left(L^{1}\right)$, say $\Lambda=J\left(g_{\Lambda}\right)$. Then $g_{\Lambda} \in L^{1}$ and for $h \in L^{\infty}, \Lambda(h)=$ $\Phi_{h}\left(g_{\Lambda}\right)=\int_{0}^{1} h g_{\Lambda} d m$. In particular we have

$$
\lambda(f)=\int_{0}^{1} f g_{\Lambda} d m, \quad(f \in C[0,1]) .
$$

On the other hand

$$
\lambda(f)=f(1 / 2)=\int_{0}^{1} f d \delta_{1 / 2}, \quad(f \in C[0,1]),
$$

where $\delta_{1 / 2}$ is the Dirac measure at $1 / 2$. The measure represented by $g_{\Lambda} d m$ as well as the measure $\delta_{1 / 2}$ are regular measures, and hence by the Riesz Representation Theorem, they are equal since both represent λ. This means $\delta_{1 / 2}$ is absolutely continuous with respect to m, which is a contradiction.
(3) Let X be compact Hausdorff. Show that if $C(X)$ is reflexive then X is finite. (The converse is obvious. Please do not waste your time proving it.)

Solution: Choose $x_{0} \in X$. Identify $C(X)^{*}$ with regular complex measures on X via the Riesz Representation Theorem. Define $\Lambda: C(X)^{*} \rightarrow \mathbb{C}$ by the formula

$$
\Lambda(\mu)=\mu\left(\left\{x_{0}\right\}\right)
$$

for μ a regular complex measure on X. Since $\left|\mu\left(\left\{x_{0}\right\}\right)\right| \leq|\mu|(X)=\|\mu\|$, therefore Λ is bounded. Now $C(X)$ is reflexive and hence there exists a continuous function f on X such that

$$
\Lambda(\mu)=\int_{X} f d \mu \quad\left(\mu \in C(X)^{*}\right)
$$

For $x \in X$, we have

$$
\chi_{\left\{x_{0}\right\}}(x)=\delta_{x}\left(\left\{x_{0}\right\}\right)=\Lambda\left(\delta_{x}\right)=\int_{X} f d \delta_{x}=f(x) .
$$

Thus $\chi_{\left\{x_{0}\right\}}=f$ and hence $\chi_{\left\{x_{0}\right\}}$ is continuous. Now

$$
X \backslash\left\{x_{0}\right\}=\chi_{\left\{x_{0}\right\}}^{-1}(0)
$$

and hence $X \backslash\left\{x_{0}\right\}$ is a closed set. Thus $\left\{x_{0}\right\}$ is open, i.e. X is discrete. Since X is compact, this forces X to be finite.
(4) Use the Riesz Representation Theorem for $C_{0}(X)^{*}$, for X a locally compact Hausdorff space, to show that there is an isomorphism from ℓ^{1} onto c_{0}^{*} which preserves norms, and give the isomorphism. Here c_{0} is the space of complex sequences $\left\{s_{n}\right\}$ with supremum norm such that $\lim _{n \rightarrow \infty} s_{n}=0$.

Solution: We can identify c_{0} with $C_{0}(\mathbb{N})$, where \mathbb{N} is given the discrete topology. By the Riesz Representation Theorem c_{0}^{*} can be identified isometrically with the space of complex measures on \mathbb{N} (complex measures on \mathbb{N} are obviously regular). The norm of a complex measure μ is its total variation $|\mu|(\mathbb{N})$. Thus, given $\Lambda \in c_{0}^{*}$, there exists a unique complex measure μ_{Λ} on \mathbb{N} such that $\Lambda(s)=\int_{\mathbb{N}} s d \mu_{\Lambda}$ for $s \in c_{0}$, and in this case $\|\Lambda\|=\left|\mu_{\Lambda}\right|(\mathbb{N})$. Conversely, given a complex measure μ on \mathbb{N}, there is a unique $\Lambda \in c_{0}^{*}$ such that $\mu=\mu_{\Lambda}$.

Given $f=\left\{f_{n}\right\} \in \ell^{1}$, we have the complex measure $\mu=\mu^{f}$ defined by $d \mu=f d \#$, where \# is the counting measure on \mathbb{N}. Moreover, from a theorem done in class,

$$
\begin{equation*}
\left\|\mu^{f}\right\|=\left|\mu^{f}\right|(\mathbb{N})=\int_{\mathbb{N}}|f| d \#=\sum_{n=1}^{\infty}\left|f_{n}\right|=\|f\|_{1} . \tag{*}
\end{equation*}
$$

From our earlier discussion, it follows that if

$$
\Lambda_{f}: c_{0} \longrightarrow \mathbb{C}
$$

is the functional

$$
\Lambda_{f}(s)=\int_{\mathbb{N}} s d \mu^{f}=\int_{\mathbb{N}} s f d \#=\sum_{n} s_{n} f_{n} \quad\left(s=\left\{s_{n}\right\} \in c_{0}\right),
$$

then

$$
\left\|\Lambda_{f}\right\|=\|f\|_{1}
$$

Now every complex measure μ on \mathbb{N} is necessarily absolutely continuous with respect to the counting measure \#, for the only subset of \mathbb{N} with zero \# measure is the empty set. Thus if μ is a complex measure on \mathbb{N} it must be of the form $d \mu=f d \#$ for a unique $f \in L^{1}(\#)=\ell^{1}$. In other words $\mu=\mu^{f}$ for a unique $f \in \ell^{1}$ and in this case $\|\mu\|=\|f\|_{1}$.

It follows that $f \mapsto \Lambda_{f}$ gives us an isometric isomorphism from ℓ^{1} to c_{0}^{*}.
(5) Show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

Solution: Let $f(x)=x$ on $[\pi, \pi]$. Then $f \in L^{2}(T)$. Work out $\|f\|_{2}^{2}=1 /(2 \pi) \int_{-\pi}^{\pi} x^{2} d x$ and the Fourier coefficents $\widehat{f}(n), n \in \mathbb{Z}$, and then use the Parseval identity

$$
\|f\|_{2}^{2}=\sum_{n \in \mathbb{Z}}|\widehat{f}(n)|^{2}
$$

to get the answer. Details are left to you.
(6) For $n \in \mathbb{N}$, let $\mathscr{B}_{n}, \mathscr{L}_{n}$ and m_{n} be the Borel σ-algebra, the Lebesgue σ-algebra, and the Lebesgue measure respectively on \mathbb{R}^{n}. Let $r+s=k, r, s \in \mathbb{N}$. Assume $\mathscr{B}_{r} \times \mathscr{B}_{s}=\mathscr{B}_{k}$, that $\mathscr{B}_{k}=\mathscr{B}_{r} \times \mathscr{B}_{s} \subset \mathscr{L}_{r} \times \mathscr{L}_{s}$ and that $m_{r} \times m_{s}=m_{k}$ on $\mathscr{L}_{r} \times \mathscr{L}_{s}$. Show that $\mathscr{L}_{r} \times \mathscr{L}_{s} \subset \mathscr{L}_{k}$ and that $\mathscr{L}_{r} \times \mathscr{L}_{s} \neq \mathscr{L}_{k}$

Solution: This was done in class using monotone classes.

Fourier Integrals. In the remaining problems \mathscr{L} will be the Lebesgue σ-algebra on \mathbb{R} and m will denote the measure on \mathscr{L} given by

$$
m=\frac{1}{\sqrt{2 \pi}}(\text { Lebesgue measure })
$$

For $1 \leq p \leq \infty, L^{p}$ will denote $L^{p}(m)$, and $\|\cdot\|_{p}$ will denote the norm on L^{p}. For $f \in L^{1}$, \widehat{f} denotes the Fourier transform of f.

In what follows, you may use the following easily established fact (please do work it out in your spare time after the exam). For $n \in \mathbb{N}$, let $h_{n}=\chi_{[-n, n]} * \chi_{[-1,1]}$. Then h_{n} is continuous and piecewise linear, which is zero in $(-\infty,-n-1] \cup[n+1, \infty)$, is the constant $\sqrt{2 / \pi}$ in $[-n+1, n-1]$, and is obvious linear interpolation of these in the $[-n-1,-n+1]$ and $[n-1, n+1]$. In other words, $\left\|h_{n}\right\|_{\infty}=\sqrt{2 / \pi}$ for all $n \in \mathbb{N}$.

For the record:

$$
h_{n}(t)= \begin{cases}0, & |t| \geq n+1 \\ \frac{n+1+t}{\sqrt{2 \pi}}, & -n-1<t<-n+1 \\ \sqrt{\frac{2}{\pi}}, & 1-n \leq t \leq n-1 \\ \frac{n+1-t}{\sqrt{2 \pi}}, & n-1<t<n+1\end{cases}
$$

Here is the graph of $(\sqrt{2 \pi}) h_{4}$:

You don't have to prove any of the above. This is more to get you comfortable with h_{n} and use it to prove what is asked in the following pages. You will only need to know that $h_{n} \in C_{0}(\mathbb{R})$, that $h_{n}=\chi_{[-n, n]} * \chi_{[-1,1]}$, and that $\left\|h_{n}\right\|_{\infty}=\sqrt{2 / \pi}$.
(7) Prove that

$$
\int_{-\infty}^{\infty} \frac{\sin ^{2}(n x)}{x^{2}} d x=n \pi
$$

by showing that $\widehat{\chi_{[-n, n]}}(t)=\sqrt{\frac{2}{\pi}} \frac{\sin (n t)}{t}$ and then using Fourier theory. (Other methods will not fetch you marks.)

Solution: Note that $\chi_{[-n, n]} \in L^{1} \cap L^{2}$. Hence $\widehat{\chi_{[-n, n]}}$ exists and is in L^{2} and

$$
\begin{equation*}
\left\|\chi_{[-n, n]}\right\|_{2}^{2}=\left\|\widehat{\chi_{[-n, n]}}\right\|_{2}^{2} . \tag{*}
\end{equation*}
$$

We have

$$
\begin{aligned}
\sqrt{2 \pi} \widehat{\chi_{[-n, n]}}(t)=\int_{-n}^{n} e^{-i t x} d x & =\left[\frac{e^{-i t x}}{-i t}\right]_{x=-n}^{n} \\
& =\frac{e^{i t n}-e^{-i t n}}{i t} \\
& =\frac{2 \sin (n t)}{t}
\end{aligned}
$$

It follows that

$$
\widehat{\chi_{[-n, n]}}(t)=\sqrt{\frac{2}{\pi}} \frac{\sin (n t)}{t} .
$$

The above together with (*) then implies

$$
\begin{aligned}
\left\|\chi_{[-n, n]}\right\|_{2}^{2} & =\frac{1}{\sqrt{2 \pi}} \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{\sin ^{2}(n x)}{x^{2}} d x \\
& =\frac{1}{\pi} \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} \frac{\sin ^{2}(n x)}{x^{2}} d x
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\left\|\chi_{[-n, n]}\right\|_{2}^{2} & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \chi_{[-n, n]}^{2}(x) d x \\
& =\sqrt{\frac{2}{\pi}} n
\end{aligned}
$$

Thus

$$
\frac{1}{\pi} \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} \frac{\sin ^{2}(n x)}{x^{2}} d x=\sqrt{\frac{2}{\pi}} n
$$

It follows that

$$
\int_{-\infty}^{\infty} \frac{\sin ^{2}(n x)}{x^{2}} d x=n \pi
$$

as required.
(8) (a) (3 marks) Let $f_{n}(x)=\frac{2}{\pi} \frac{\sin (n x) \sin (x)}{x^{2}}$. Show that $\widehat{f_{n}}=h_{n}$ where h_{n} has been defined two pages earlier.

Solution: Since $h_{n}=\chi_{[-n, n]} * \chi_{[-1,1]}$ we have

$$
\begin{aligned}
\widehat{h_{n}}(t) & =\widehat{\chi_{[-n, n]}}(t) \cdot \widehat{\chi_{[-1,1]}}(t) \\
& =\frac{2}{\pi} \frac{\sin (n t) \sin (t)}{t^{2}} \\
& =f_{n}(t)
\end{aligned}
$$

Since $\widehat{\chi_{[-n, n]}}$ and $\widehat{\chi_{[-1,1]}}$ are in L^{2}, their product, namely $\widehat{h_{n}}=f_{n}$, is in L^{1}. Since $\widehat{h_{n}} \in L^{1}$, Fourier inversion applies and we have:

$$
h_{n}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f_{n}(t) e^{i t x} d t=\widehat{g_{n}}(x)
$$

where $g_{n}(t)=f_{n}(-t)$. Now $f_{n}(t)=\frac{2}{\pi} \frac{\sin (n t) \sin (t)}{t^{2}}=f_{n}(-t)=g_{n}(t)$. This proves that $\widehat{f_{n}}=h_{n}$.
(b) (7 marks) Show that the Fourier transform $\Phi: L^{1} \rightarrow C_{0}(\mathbb{R}), \Phi(f)=\widehat{f}$, is not an onto map by showing that if f_{n} is as in part (a), then $\left\|f_{n}\right\|_{1} \rightarrow \infty$ as $n \rightarrow \infty$. Why would this prove that Φ is not onto? (To show $\left\|f_{n}\right\|_{1} \rightarrow \infty$ as $n \rightarrow \infty$, you may use the fact that $\sin (x) \geq x / 2$ in $[0,1]$ and the fact that $\int_{0}^{\infty}(|\sin (x)| / x) d x=\infty$. You don't have to prove these well known results.)

Solution: Let us first prove that $\left\|f_{n}\right\|_{1} \rightarrow \infty$ as $n \rightarrow \infty$. We have

$$
\begin{aligned}
\left\|f_{n}\right\|_{1} & =\frac{1}{\pi} \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty}\left|\frac{\sin (n x) \sin (x)}{x^{2}}\right| d x \\
& \geq \frac{1}{\pi} \sqrt{\frac{2}{\pi}} \int_{0}^{1}\left|\frac{\sin (n x) \sin (x)}{x^{2}}\right| d x \\
& \geq \frac{1}{\pi} \sqrt{\frac{2}{\pi}} \int_{0}^{1} \frac{|\sin (n x)|}{x^{2}} \frac{x}{2} d x \quad(\text { since } \sin x \geq x / 2 \text { on }[0,1]) \\
& =\frac{1}{\pi} \frac{1}{\sqrt{2 \pi}} \int_{0}^{1} \frac{|\sin (n x)|}{x} d x \\
& =\frac{1}{\pi} \frac{1}{\sqrt{2 \pi}} \int_{0}^{n} \frac{|\sin (x)|}{x} d x .
\end{aligned}
$$

The last quantity $\longrightarrow \infty$ as $n \longrightarrow \infty$.
We have seen in class (via the Fourier Inversion theorem) that if the Fourier transform \widehat{f} of a function f is zero, then $f=0$ in L^{1}. Therefore Φ is one-to-one. The norm of $C_{0}(\mathbb{R})$ is the supremum norm $\|\cdot\|_{\infty}$. Moreover,

$$
|\widehat{f}(t)| \leq 1 /(2 \pi) \int_{-\infty}^{\infty}\left|f(x) e^{i t x}\right| d x=\|f\|_{1}
$$

for $t \in \mathbb{R}$, i.e.,

$$
\|\widehat{f}\|_{\infty} \leq\|f\|_{1}
$$

Thus Φ is a continuous linear operator. According to the Open Mapping Theorem, if Φ is onto there exists $\delta>0$ such that $\|\widehat{f}\|_{\infty} \geq \delta\|f\|_{1}$ for every $f \in L^{1}$. In particular

$$
\left\|h_{n}\right\|_{\infty} \geq \delta\left\|f_{n}\right\|_{1}
$$

for every $n \in \mathbb{N}$. This means $\sqrt{\frac{2}{\pi}} \geq \delta\left\|f_{n}\right\|_{1}$ for every $n \in \mathbb{N}$, contradicting the fact that $\left\|f_{n}\right\|_{1} \rightarrow \infty$ as $n \rightarrow \infty$.

