
ČECH COMPLEX, TENSOR PRODUCT OF COMPLEXES,
Hom•(A•, B•) AND THE KOSZUL COMPLEX

1. Another version of the Čech complex

Here is another version of the Čech complex, which is very obviously quasi-
isomorphic to the alternating Čech complex. This is the version given for example
in Hartshorne’s Algebraic Geometry. This will be the default version we’ll use in
the course, though if we need to distinguish from either the alternating or the
usual Čech cohomology we will tag on the label Hartshorne to the complex (with
apologies to Hartshorne).

Let X be a topological space and U = (Ui)i∈I a covering of X, with the index
set I having a fixed well-ordering1. Write Ui0...ip for the intersection Ui0...ip =
Ui0 ∩ · · · ∩ Uip . Define for any presheaf P on X

Cp(U, P) :=
∏

i0<···<ip

P(Ui0...ip
).

Define the coboundary Cp(U, P)→ Cp+1(U, P) in the usual way, namely via the
standard simplicial formula:

(dp(s))i0...ip+1 =
p+1∑
k=0

(−1)ksio...k̂...ip+1
|Ui0...ip+1

.

Note that this complex is obviously quasi-isomorphic to the alternating Čech com-
plex (the total order gives us a way of picking out a component amongst many
equivalent entries differing by a sign of a permutation in C•alt(U, )). If we wish
to distinguish the Hartshorne version from other versions, we will use the symbol
C•H(U, P). Otherwise, we will keep subscripts and superscripts to a minimum, and
use C•(U, P) for the just defined complex.

This version is very useful in computing the cohomology of line bundles on
projective space.

2. The tensor product of two complexes and Hom•(A•, B•)

2.1. General nonsense. Given two categories A and B, the product category
makes sense in an obvious way: the objects are pairs (A, B), with A and object of
A and B an object B. Likewise morphisms (A1, B1)→ (A2, B2) are pairs (f, g),
with f : A1 → A2 and g : B1 → B2 maps in A and B respectively. Definitions of
composites etc. are left to you.

Now suppose A , B, and C are abelian categories.
A functor T : A ×B → C is a biadditive covariant functor if for fixed A ∈ A ,

B ∈ B, the functors T (A, •) : B → C and T (−, B) : A → C are additive covariant
functors. An example of this, with A a commutative ring, is the tensor product
functor −⊗A • : ModA ×ModA → ModA.

1By the Axiom of Choice, there is at least one well-ordering on I.
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Similarly T : A ×B → C is a biadditive functor, contravariant in the first argu-
ment and covariant in the second argument, if T (−, B) is contravariant additive,
and T (A, •) is covariant additive. An example of this is

HomA (−, •) : A ×A → Ab

where Ab is the category of abelian groups. Sometimes it is easier to write such a
functor as T : A ◦ ×B → C , to indicate the contravariance in the first argument
(recall, A ◦ is the opposite category of A ).

You can work out the definitions for the other two possibilities for additive
bifunctors by yourself.

For such functors there are standard conventions for turning T (A•, B•) into a
complex. In the first (biadditive covariant) case we have commutative diagrams
(one for each pair of integers (p, q)):

T (Ap, Bq+1)
via ∂A• // T (Ap+1, Bq+1)

T (Ap, Bq)

via ∂B•

OO

via ∂A•
// T (Ap+1, Bq)

via ∂B•

OO

This evidently gives a double complex (provided C has countable direct sums2 or
some such thing). The total complex is denoted T •(A•, B•). In other words

(†) T •(A•, B•) := Tot•T (A•, B•).

There is one exception to this notation. The total complex of the tensor product
of complexes (in categories where ⊗ exist) should be denoted A•

•
⊗ B• by this

convention, but instead is denoted A• ⊗B•.
Similarly in the second case (biadditive, contravariant in the first, covariant in

the second) we associate a double complex (assuming C has enough properties, e.g.
countable direct sums etc)

T (A•, B•) = (T (A−q, Bp), T (1, ∂p
B•), (−1)q+1T (∂−q−1

A• , 1))(p,q)∈Z×Z.

Note that for each (p, q) we have a commutative diagram:

T (A−q−1, Bp)
via ∂B• // T (A−q−1, Bp)

T (A−q, Bp)

(−1)q+1T (∂−q−1
A• , 1)

OO

via ∂B•
// T (A−q, Bp)

(−1)q+1T (∂−q−1
A• , 1)

OO

The total complex of this is denoted T •(A•, B•). Thus, we once again have a
formula:

(∗) T •(A•, B•) := Tot•T (A•, B•).

To summarize notation (for either case; bi-covariant or mixed):
• Double complex = T (A•, B•).
• Total complex = T •(A•, B•).

2If C has countabe direct products, then we can extend the definition of a double complex and
its total complex in an obvious way and this is done for the Hom(−, •) biaddtive functor, since

Ab has arbitrary products and sums.
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2.2. Tensor product of complexes. Suppose A is a commutative ring (or more
generally a sheaf of rings over a topological space). Then for A-modules M and N
we have the biadditive functor T (M, N) = M ⊗A N . If R• and S• are complexes,
then

R• ⊗A S• := T •(R•, S•)
where we are using formula (†) for the right-side. In practical terms,

[R• ⊗A S•]n =
⊕

p+q=n

Rp ⊗A Sq

and the coboundary is:

∂p+q(rp ⊗ sq) = ∂p(rp)⊗ sq + (−1)prp ⊗ ∂q(sq).

We point out again that consistency demands that we write R•
•
⊗A S• for this

complex, but thankfully nobody submits to such notational tyranny.

2.3. The complex Hom•(A•, B•). Now suppose A is an abelian category, and
A•, B• are complexes. Then applying our general principles we have a complex

Hom•A (A•, B•) = T •(A•, B•)

where of course T • is given by (∗) in the previous subsection with T (M, N) =
HomA (M, N).3 But this time we make full use of the fact that arbitrary direct
products exist for abelian groups. So here is Hom•A (A•, B•) explictly (and to
lighten notation, we drop A from the subscript for Hom):

Homn(A•, B•) =
∏
j∈Z

Hom(Aj , Bj+n).

The coboundary dn : Homn(A•, B•) → Homn+1(A•, B•) takes f = (f j)j∈Z in∏
j∈Z Hom(Aj , Bj+n) = Homn(A•, B•) to dn(f) ∈

∏
j∈Z Hom(Aj , Bj+n+1) =

Homn+1(A•, B•) and the formula is:

dn(f) = (∂n+j
B•

◦f j + (−1)n+1f j+1 ◦∂j
A•)j∈Z.

This formula is standard (see for example B. Iversen’s “Cohomology of Sheaves”
from which much of today’s notes were made or Joseph Lipman and Mitsuyasu
Hashimoto’s rather advanced “Foundations of Grothendieck Duality for Diagrams
of Schemes”). Unfortunately a classic in the subject—Robin Hartshorne’s “Residues
and Duality”—has a different convention and it differs from the above by a factor
of (−1)n+1.

3. Koszul Complexes

There are two related Koszul complexes. The homology Kozsul complex and the
cohomology Koszul complex. Let A be a commutative ring and t an element of A
and M an A-module. The cohomology Koszul complex of M with respect to t is
the complex

K•(t, M) : 0→M
t−→M → 0

with the left M in the 0th spot and whence the right M in the first spot. Note that

K•(t, M) = K•(t, A)⊗A M.

3Note our sudden rediscovery of ideological/notational purity. We now put decorations around
Hom, something we didn’t for ⊗. Think about the reason for this.
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If t = (t1, . . . , tn) is a sequence of elements in A, then the Koszul cohomology
complex of M with respect to t is

K•(t, M) := K•(t1, A)⊗A . . .⊗A K•(tn, A)⊗A M.

This complex lives in degrees 0, 1, . . . , n.4

The homology Koszul complexes are identical expect for the grading involved.
Thought of as a co-chain complex it lives in degrees −n,−n + 1, . . . , 0 (and hence
as a chain complex, i.e. as a homology complex, it lives in degrees 0, . . . , n). Recall
that one can turn a cohomology complex C• into a homology complex C• by setting
Ci = C−i. Then the Koszul homology complex of M with respect to t is obtained
by shifting K•(t, M) n-places to the left (no change of sign) and then regarding it
as a homology complex. As a chain complex (=homology complex) it is invoked by
the symbol K•(t, M). It is easy to see that

K•(t, M) = K•(t1, A)⊗A . . .⊗A K•(tn, A)⊗A M.

An interesting fact is that K•(t, M) = HomA(K•(t, A), M) where the complex
on the right is the naive complex (without the fancy sign conventions of the previous
sections).

These complexes are intimately related to Čech complexes as your Homework
will show.

4This is an n-fold tensor product of complexes, and rightly should be arranged in an n-

dimensional grid. I tried but the two dimensional page just didn’t have enough space to squeeze in

such a grid, a problem many orders more complicated than the one Fermat faced with his margin.
By the way, there is an associative law for tensor product of complexes, and in any case, it is

enough to think of A•1 ⊗ . . .⊗A•n as ((. . . ((A•1 ⊗A•2)⊗A•3) . . . )⊗A•n−1)⊗A•n.
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