Whist for th 5, Moslem 5
Let X be a topological space and $U=\left(U_{\infty}\right)_{\alpha \in I}$ an open cover of X with I a well-ordeed set. Let of be a sheaf on x

Let $\partial^{p}: C^{P}(u, \mathcal{F}) \rightarrow C^{p+1}(u, \mathcal{F})$ be the standend cobonmary on $C^{*}(u, 7), p \geq 0$. For $p \geqslant 0$, let $\Sigma_{i}^{p} C$ Ix...xI be the st of strictly increasing sequences. In otter words $\alpha=\left(\alpha_{0}, \ldots, \alpha_{p}\right) \in \sum_{1}^{p}$ inf $\alpha_{0}<\alpha_{1} \leqslant \ldots<\alpha_{p}$.

If $\alpha \in \sum_{1}^{p}$ and $\beta \in \sum_{1}^{p+1}$ we say B is an in mediate refinement of α if $\left\{\alpha_{0}, \ldots, \alpha,\right\} \subset\left\{\beta_{0, \ldots, p}, \ldots, 1\right\}$. Sh this case there exists a unique integer $j(\alpha, \beta)$ sot. $O \leq j(k, \beta) \leq p+1$ and

$$
\left\{\beta_{0, \ldots, \beta_{p+1}}\right\}=\{20, \ldots, \alpha\} \cup\left\{\beta_{j(\alpha, \beta)}\right\}
$$

Now suppose $\alpha \in \Sigma^{1}$. We have a map (erichaoion)
 For $\alpha \in \sum^{p}$ and $\beta \in \sum^{p+1}$ define

$$
\partial_{\alpha, \beta}^{p}: \mathcal{F}\left(u_{\alpha}\right) \rightarrow \mathcal{F}\left(u_{p}\right)
$$

by the formal

First show that fer $s \in C(x, y) \sim\left(H_{\mathrm{c}}\right)$

$$
\partial_{\alpha, \beta}^{p}(s)= \begin{cases}0 & \text { if } \& \text { is NOT an inmediate. } \\ (-1)^{j(s, \beta)}\left(\Delta \mid u_{p}\right) & \text { if } \& \text { is am immediate } \\ \text { refinement of } \underline{\alpha} .\end{cases}
$$

Next suppose I has a langer index ∞. Let $J=I \cdot\{\infty\}$, and set $U_{J}=\left\{U_{\alpha}\right\}_{\alpha \in J} ; \quad U_{J}=U_{\alpha \in J}, \quad U_{\alpha}=U_{J} \cap U_{\infty}$.
If $V_{\alpha}=U_{\infty} \cap U_{\alpha}, \alpha \in J$, then $\nu=\left(V_{\alpha}\right) \alpha \in J$ is a cover of U^{*}.

It is easy to see that we have a map of complexes

$$
\sigma=\left(\sigma^{p}\right): e^{\prime}\left(u_{J}, f \mid u_{J}\right) \rightarrow e^{:}\left(u^{*}, \mathcal{F} \mid u^{*}\right)
$$

griew by "striction".
Now consider the ante-commuting double complex
-)

$$
o \rightarrow y\left(u_{\infty}\right) \rightarrow e^{0}\left(u^{*}, f \mid u^{*}\right) \rightarrow e^{\prime}\left(u^{*}, f \mid u^{*}\right) \rightarrow \cdots \rightarrow e^{p}\left(u^{*}, f \mid u^{*}\right) \rightarrow \cdots
$$

$$
0 \rightarrow \sum^{\uparrow} \hat{p}^{0}\left(u_{J} ;\left.\sigma^{0}\right|_{u_{J}}\right) \rightarrow c^{\prime}\left(u_{J},\left.\mathcal{F}\right|_{u_{J}}\right) \rightarrow \ldots \rightarrow c^{p}\left(u_{J}, f \mid u_{J}\right) \rightarrow \ldots
$$

where $\mathcal{F}\left(U_{0}\right)$ is in the $(1,-1)$ th $(-1,1)$ 热 spot, and $e^{0}\left(u_{3}, f\left(u_{5}\right)\right.$ is in the $(0,0)^{\text {ste }}$ spot and $f\left(u_{\infty}\right) \rightarrow \varphi^{0}\left(u^{*}, \mathcal{F} / u^{*}\right)$ is grin by notriction. Chalk that the total complex of this anti-comnating complex is $e^{\prime}(u, 7)$ - you will find it helppal to use the formula fer $\partial_{\alpha}^{p}, \beta$ given in the previous page.

Apply this to the problem on hand by proving

$$
\begin{aligned}
K_{\infty}^{*}(t, A) & =k_{\infty}^{0}\left(t_{1}, A\right) \otimes k_{0}\left(t_{2}, A\right) \otimes \ldots \otimes k_{\infty}\left(t_{n}, A\right) \\
& =k_{\infty}^{0}\left(\left(t_{1}, \ldots, t_{n-1}\right), A\right) \otimes k^{0}\left(t_{n}, A\right)
\end{aligned}
$$

and by chalking that $K^{\circ}\left(t_{i}, A\right)$ is $0 \rightarrow A \rightarrow A_{t_{i}} \rightarrow 0$ where A is places in degree 0 . Now use induction, ie assume that the assation of $P_{n} 5^{\circ}$ is bine for $k_{i}^{\prime}\left(\left(t_{1}, \ldots, t_{n-1}\right), A\right)$.
You will of conte have to cheek that the assertion is brie at some initial stage $(n=1$ or $n=2)$.

Connections
Comments: I. An pattern 7, $W=$ Specs and not SpuR.
2. In problem 8, it should be $H^{n-1}\left(u, O_{u}\right)$ and NOT $H^{n-1}\left(U ; U_{U}\right)$ (re. replacer U is $H^{n-1}\left(U_{2}-\right)$ by U).

